ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 67013
Тема:    [ Простые числа и их свойства ]
Сложность: 3
Классы: 7,8,9,10
В корзину
Прислать комментарий

Условие

Найдите наибольшее натуральное $n$, обладающее следующим свойством: для любого простого нечетного $p$, меньшего $n$, разность  $n - p$  также является простым числом.


Решение

Действительно,  10 = 3 + 7 = 5 + 5.
При  $n$ > 10  числа  $n$ – 3,  $n$ – 5,  $n$ – 7  больше 3 и дают разные остатки при делении на 3, значит, одно из них делится на 3.


Ответ

10.

Замечания

4 балла

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 85
Год 2022
класс
Класс 10
задача
Номер 1
олимпиада
Название Московская математическая олимпиада
год
Номер 85
Год 2022
класс
Класс 8
задача
Номер 2
олимпиада
Название Турнир городов
год/номер
Номер 43
Дата 2021/22
вариант
Вариант весенний тур, сложный вариант, 8-9 класс
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .