ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Можно ли раскрасить все натуральные числа, большие 1, в три цвета (каждое число – в один цвет, все три цвета должны использоваться) так, чтобы цвет произведения любых двух чисел разного цвета отличался от цвета каждого из сомножителей? Можно ли расставить в клетках таблицы $6\times 6$ числа, среди которых нет одинаковых, так, чтобы в каждом прямоугольнике $1\times 5$ (как вертикальном, так и горизонтальном) сумма чисел была равна 2022 или 2023? |
Задача 67142
УсловиеМожно ли расставить в клетках таблицы $6\times 6$ числа, среди которых нет одинаковых, так, чтобы в каждом прямоугольнике $1\times 5$ (как вертикальном, так и горизонтальном) сумма чисел была равна 2022 или 2023? РешениеПусть это удалось. Числа в соседних углах различаются на 1, так как каждое из них дополняет четыре клетки между ними до прямоугольника $1 \times 5$. Пусть $a$ — наименьшее число из угловых. Тогда в соседних с ним углах стоят числа $a + 1$. Противоречие. Ответнельзя. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке