ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пусть K, L, M, N – середины сторон AB, BC, CD, AD выпуклого четырёхугольника ABCD; отрезки KM и LN пересекаются в точке O. В гоночном турнире 12 этапов и n участников. После каждого этапа все участники в зависимости от занятого места k получают баллы ak (числа ak натуральны, и a1 > a2 > ... > an). При каком наименьшем n устроитель турнира может выбрать числа a1, ..., an так, что после предпоследнего этапа при любом возможном распределении мест хотя бы двое участников имели шансы занять первое место. Докажите, что среди вершин выпуклого девятиугольника можно найти три, образующие тупоугольный треугольник, ни одна сторона которого не совпадает со сторонами девятиугольника. |
Задача 67311
УсловиеДокажите, что среди вершин выпуклого девятиугольника можно найти три, образующие тупоугольный треугольник, ни одна сторона которого не совпадает со сторонами девятиугольника. РешениеОбозначим девятиугольник как $A_1A_2 \ldots A_9$. Рассмотрим четырёхугольники $A_2A_4A_6A_8$ и $A_1A_4A_6A_8$. Заметим, что оба прямоугольниками они быть не могут, так как прямоугольник однозначно задаётся тремя вершинами. Значит, так как сумма углов в четырёхугольнике равна $360^{\circ}$, один из них будет иметь тупой угол, который и даст нам искомый треугольник. ЗамечанияМожно показать, что всегда найдётся удовлетворяющий условию задачи треугольник, один из углов которого не меньше $100^{\circ}$.Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке