|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Задача 67452
УсловиеКаждая клетка квадрата 100\times 100 покрашена либо в белый, либо в чёрный цвет. Оказалось, что у каждой белой клетки ровно две соседних с ней по стороне клетки покрашены в белый цвет, а у каждой чёрной клетки ровно две соседних с ней по стороне клетки покрашены в чёрный цвет. Найдите максимальное возможное количество чёрных клеток. Решение 1Пример. Приведём пример раскраски, в которой 5100 чёрных клеток. Разобьём квадрат на 50 «слоёв» толщиной в 1 клетку и покрасим их в чёрный и белый цвет так, что внешний слой покрашен в чёрный цвет, а соседние слои покрашены в разный цвет. На рисунке приведён пример такой раскраски для квадрата 8 \times 8. Легко видеть, что эта раскраска удовлетворяет условиям задачи. Оценка. Докажем, что в любой раскраске не более 5100 чёрных клеток. Рассмотрим произвольную раскраску, удовлетворяющую условию. Пусть в ней b чёрных и w белых клеток. Так как все клетки квадрата покрашены, то b + w = 10000. Назовём ребром общую сторону двух соседних по стороне клеток. В квадрате 100 \times 100 есть 99 \cdot 100 вертикальных рёбер и 99 \cdot 100 горизонтальных, всего – 19800 рёбер. Будем называть ребро чёрным, если оно разделяет чёрные клетки, белым, если оно разделяет белые клетки, и разноцветным, если оно разделяет чёрную и белую клетки. По условию на границе каждой чёрной клетки лежат ровно два чёрных ребра. Но и каждое чёрное ребро лежит на границе двух чёрных клеток, поэтому чёрных рёбер ровно b. Аналогично белых рёбер ровно w. Поэтому разноцветных рёбер 19800 - b - w = 19800 - 10000 = 9800. На границе каждой белой клетки лежит не более двух разноцветных рёбер, а каждое разноцветное ребро лежит на границе ровно одной белой клетки. Из этого следует, что 2w \geqslant 9800, то есть w \geqslant 4900. Поскольку b + w = 10000, то b \leqslant 5100, что и требовалось доказать. Решение 2Приведём другой способ сделать оценку. Отметим центры клеток и соединим отрезком центры соседних по стороне клеток разного цвета. Тогда угловые клетки не будут соединены ни с одной другой клеткой, клетки у границы будут соединены ровно с одной клеткой, клетки не у границы будут соединены ровно с двумя клетками. Следовательно, все клетки, кроме угловых, разобьются на цепочки, концы которых лежат на границе, и циклы. На рисунке приведён пример разбиения. Ответ5100 клеток. Замечания1. Пример оптимальной раскраски единственный. Действительно, из второго решения следует, что чёрных клеток на 200 больше, чем белых, только в случае, когда все угловые и все конечные клетки цепочек чёрные. Это соответствует тому, что все граничные клетки чёрные. Несложно видеть, что такая раскраска только одна.2. Отметим, что в раскрасках, удовлетворяющих условию, связное по стороне множество чёрных клеток не обязательно образует прямоугольную каёмку (см. рисунок выше). Источники и прецеденты использования |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|
Проект осуществляется при поддержке