Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

Остап Бендер организовал в городе Фуксе раздачу слонов населению. На раздачу явились 28 членов профсоюза и 37 не членов, причём Остап раздавал слонов поровну всем членам профсоюза и поровну – не членам. Оказалось, что существует лишь один способ такой раздачи (так, чтобы раздать всех слонов). Какое наибольшее число слонов могло быть у О. Бендера? (Предполагается, что каждому из пришедших достался хотя бы один слон.)

Вниз   Решение


Прямоугольник разбили на несколько меньших прямоугольников. Могло ли оказаться, что для каждой пары полученных прямоугольников отрезок, соединяющий их центры, пересекает еще какой-нибудь прямоугольник?

ВверхВниз   Решение


Можно ли нарисовать на плоскости шесть точек и так соединить их непересекающимися отрезками, что каждая точка будет соединена ровно с четырьмя другими?

ВверхВниз   Решение


На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1. Отрезки BB1 и CC1, CC1 и AA1, AA1 и BB1 пересекаются в точках A2, B2 и C2 соответственно. Докажите, что если $ \overrightarrow{AA_2}$ + $ \overrightarrow{BB_2}$ + $ \overrightarrow{CC_2}$ = $ \overrightarrow{0}$, то AB1 : B1C = CA1 : A1B = BC1 : C1A.

ВверхВниз   Решение


Докажите, что треугольник ABC является правильным тогда и только тогда, когда при повороте на 60o (либо по часовой стрелке, либо против) относительно точки A вершина B переходит в C.

ВверхВниз   Решение


Докажите, что если ac - b2 = 0, то кривая Q(xy) + 2dx + 2ey = f, где Q (xy) = ax2 + 2bxy + cy2 изометрична либо кривой y2 = 2px (называемой параболой), либо паре параллельных прямых y2 = c2, либо паре слившихся прямых y2 = 0, либо представляет собой пустое множество.

ВверхВниз   Решение


Найти все двузначные числа, сумма цифр которых не меняется при умножении числа на 2, 3, 4, 5, 6, 7, 8 и 9.

Вверх   Решение

Задача 78061
Темы:    [ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
[ Перебор случаев ]
Сложность: 3
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Найти все двузначные числа, сумма цифр которых не меняется при умножении числа на 2, 3, 4, 5, 6, 7, 8 и 9.


Решение

По условию сумма цифр числа a и числа 9a одна и та же. Поэтому согласно признаку делимости на 9 число a делится на 9. Двузначные числа, кратные 9, следующие: 18, 27, 36, 45, 54, 63, 72, 81, 90 и 99. Из них числа 27, 36, 54, 63, 72 и 81 не обладают требуемым свойством; в этом можно убедиться, умножая их, соответственно, на 7, 8, 7, 3, 4 и 9. Оставшиеся числа требуемым свойством обладают.


Ответ

18, 45, 90 и 99.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 19
Год 1956
вариант
Класс 7
Тур 1
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .