Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Можно ли целые числа от 1 до 2004 расставить в некотором порядке так, чтобы сумма каждых десяти подряд стоящих чисел делилась на 10?

Вниз   Решение


Докажите, что медиана разбивает треугольник на два равновеликих треугольника.

ВверхВниз   Решение


Имеется несколько городов, некоторые из них соединены автобусными маршрутами (без остановок в пути). Из каждого города можно проехать в любой другой (возможно, с пересадками). Иванов купил по одному билету на каждый маршрут (то есть может проехать по нему один раз всё равно в какую сторону). Петров купил n билетов на каждый маршрут. Иванов и Петров выехали из города A. Иванов использовал все свои билеты, новых не покупал и оказался в другом городе B. Петров некоторое время ездил по купленным билетам, оказался в городе X и не может из него выехать, не купив новый билет. Докажите, что X – это либо A, либо B

ВверхВниз   Решение


Дан треугольник ABC. Найти такую точку, что если её симметрично отразить от любой стороны треугольника, то она попадает на описанную окружность.

Вверх   Решение

Задача 78187
Темы:    [ Ортоцентр и ортотреугольник ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Дан треугольник ABC. Найти такую точку, что если её симметрично отразить от любой стороны треугольника, то она попадает на описанную окружность.


Подсказка

См. задачу 55463.


Ответ

Точка пересечения высот треугольника.

Замечания

Нетрудно понять, что такая точка единственна.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 22
Год 1959
вариант
Класс 7
Тур 2
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .