Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 6 задач
Версия для печати
Убрать все задачи

Докажите, что растяжение плоскости является аффинным преобразованием.

Вниз   Решение


На рисунке изображен график функции  y = x² + ax + b.  Известно, что прямая AB перпендикулярна прямой  y = x.
Найдите длину отрезка OC.

ВверхВниз   Решение


Увеличится или уменьшится сумма  ,  если все слагаемые в ней заменить на 1/150?

ВверхВниз   Решение


Пусть A1, B1, C1, D1 — образы точек A, B, C, D при аффинном преобразовании. Докажите, что если $ \overrightarrow{AB}$ = $ \overrightarrow{CD}$, то $ \overrightarrow{A_1B_1}$ = $ \overrightarrow{C_1D_1}$.

ВверхВниз   Решение


Докажите, что уравнение  x² + y² – z² = 1997  имеет бесконечно много решений в целых числах.

ВверхВниз   Решение


Два концентрических круга поделены на 2k равных секторов. Каждый сектор выкрашен в белый или чёрный цвет. Доказать, что если белых и чёрных секторов на каждом круге одинаковое количество, то можно сделать такой поворот, что по крайней мере на половине длины окружности будут соприкасаться разноцветные куски.

Вверх   Решение

Задача 78203
Темы:    [ Концентрические окружности ]
[ Поворот (прочее) ]
Сложность: 3+
Классы: 10,11
Из корзины
Прислать комментарий

Условие

Два концентрических круга поделены на 2k равных секторов. Каждый сектор выкрашен в белый или чёрный цвет. Доказать, что если белых и чёрных секторов на каждом круге одинаковое количество, то можно сделать такой поворот, что по крайней мере на половине длины окружности будут соприкасаться разноцветные куски.

Решение

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 22
Год 1959
вариант
Класс 10
Тур 2
задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .