Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На плоскости отмечено 10 точек так, что никакие три из них не лежат на одной прямой. Сколько существует треугольников с вершинами в этих точках?

Вниз   Решение


Какое наибольшее количество множителей вида     можно вычеркнуть в левой части уравнения     так, чтобы число его натуральных корней не изменилось?

ВверхВниз   Решение


На плоскости расположено несколько непересекающихся отрезков. Всегда ли можно соединить концы некоторых из них отрезками так, чтобы получилась замкнутая несамопересекающаяся ломаная?

Вверх   Решение

Задача 78242
Темы:    [ Шахматные доски и шахматные фигуры ]
[ Обход графов ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9
В корзину
Прислать комментарий

Условие

На шахматной доске выбраны две клетки одинакового цвета.
Доказать, что ладья, начиная с первой, может обойти все клетки по разу, а на второй выбранной клетке побывать два раза.


Решение

Ясно, что если искомый путь ладьи существует при каком-то выборе отмеченных клеток, то он существует и при любом другом выборе, который получается из исходного перестановкой вертикалей или перестановкой горизонталей шахматной доски. Поэтому утверждение задачи достаточно доказать всего в двух случаях: если первая отмеченная клетка угловая, а вторая  1) соседняя с ней по стороне,  2) соседняя с ней по диагонали. Условие, что две клетки имеют одинаковый цвет – лишнее и никак не используется. В каждом из случаев 1) и 2) легко строится искомый путь ладьи.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 24
Год 1961
вариант
1
Класс 7
Тур 1
задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .