ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Есть доска 1×1000, вначале пустая, и куча из n фишек. Двое ходят по очереди. Первый своим ходом "выставляет" на доску не более 17 фишек по одной на любое свободное поле (он может взять все 17 из кучи, а может часть – из кучи, а часть – переставить на доске). Второй снимает с доски любую серию фишек (серия – это несколько фишек, стоящих подряд, то есть без свободных полей между ними) и кладёт их обратно в кучу. Первый выигрывает, если ему удастся выставить все фишки в ряд без пробелов.
Даны окружность и точка A. Найдите геометрическое место середин хорд, высекаемых данной окружностью на всевозможных прямых, проходящих через точку A.
Диагональ BD четырёхугольника ABCD является диаметром
окружности, описанной около этого четырёхугольника. Найдите
диагональ AC, если BD = 2, AB = 1,
Дано натуральное число n ≥ 2. Рассмотрим все такие покраски клеток доски n×n в k цветов, что каждая клетка покрашена ровно в один цвет и все k цветов встречаются. При каком наименьшем k в любой такой покраске найдутся четыре окрашенных в четыре разных цвета клетки, расположенные в пересечении двух строк и двух столбцов?
Сторона AD четырёхугольника ABCD является диаметром
окружности, описанной около этого четырёхугольника. Найдите
сторону BC, если AD = 6,
BD = 3
Окружность, построенная на стороне AD параллелограмма ABCD как на диаметре, проходит через середину диагонали BD и пересекает сторону CD в точке K. Найдите отношение KD : CD, если BD = 2AC.
Бумажный квадрат был проколот в 1965 точках. Из точек-проколов и вершин квадрата никакие три не лежат на одной прямой. Потом сделали несколько прямолинейных не пересекающихся между собой разрезов, каждый из которых начинался и кончался только в проколотых точках или вершинах квадрата. Оказалось, что квадрат разрезан на треугольники, внутри которых проколов нет. Сколько было сделано разрезов и сколько получилось треугольников? |
Задача 78562
Условие
Бумажный квадрат был проколот в 1965 точках. Из точек-проколов и вершин
квадрата никакие три не лежат на одной прямой. Потом сделали несколько
прямолинейных не пересекающихся между собой разрезов, каждый из которых
начинался и кончался только в проколотых точках или вершинах квадрата.
Оказалось, что квадрат разрезан на треугольники, внутри которых проколов нет.
Сколько было сделано разрезов и сколько получилось треугольников?
РешениеОтвет: 5896 разрезов, 3932 треугольника. Решим задачу в общем случае, когда квадрат проколот в n точках. Пусть число полученных треугольников равно x. С одной стороны, сумма углов всех этих треугольников равна x . 180o. С другой стороны, она равна 360o + n . 360o (сумма углов квадрата и сумма углов 360o при n вершинах). Следовательно, x = 2n + 2. Пусть число проведённых разрезов равно y. С одной стороны, число сторон полученных треугольников равно 3x. С другой стороны, оно равно 4 + 2y (каждая сторона квадрата учитывается один раз, а каждый разрез — два раза). Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке