ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 78558  (#1)

Тема:   [ Неравенства с описанными, вписанными и вневписанными окружностями ]
Сложность: 3
Классы: 10,11

Окружности O1 и O2 лежат внутри треугольника и касаются друг друга извне, причём окружность O1 касается двух сторон треугольника, а окружность O2 -- тоже касается двух сторон треугольника, но не тех же, что O1. Доказать, что сумма радиусов этих окружностей больше радиуса окружности, вписанной в треугольник.
Прислать комментарий     Решение


Задача 78559  (#2)

Темы:   [ Признаки делимости (прочее) ]
[ Арифметика остатков (прочее) ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 8,9,10

Шестизначное число делится на 37 и имеет хотя бы две различные цифры. Его первая и четвёртая цифры – не нули.
Докажите, что, переставив цифры в данном числе, можно получить другое число, тоже кратное 37 и не начинающееся с нуля.

Прислать комментарий     Решение

Задача 78560  (#3)

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Теорема синусов ]
[ Биссектриса делит дугу пополам ]
[ Вспомогательная окружность ]
Сложность: 3+
Классы: 8,9

Концы отрезка постоянной длины скользят по сторонам данного угла. Из середины этого отрезка к нему восставлен перпендикуляр. Докажите, что отрезок перпендикуляра от его начала до точки пересечения с биссектрисой угла имеет постоянную длину.
Прислать комментарий     Решение


Задача 78561  (#4)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Геометрическая прогрессия ]
[ Многочлены (прочее) ]
[ Свойства модуля. Неравенство треугольника ]
Сложность: 3+
Классы: 10,11

X – число, большее 2. Некто пишет на карточках числа:   1, X, X², X³, X4, ..., Xk (каждое число только на одной карточке). Потом часть карточек он кладёт себе в правый карман, часть   в левый, остальные выбрасывает. Докажите, что сумма чисел в правом кармане не может быть равна сумме чисел в левом.

Прислать комментарий     Решение

Задача 78562  (#5)

Темы:   [ Подсчет двумя способами ]
[ Разные задачи на разрезания ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3+
Классы: 10,11

Бумажный квадрат был проколот в 1965 точках. Из точек-проколов и вершин квадрата никакие три не лежат на одной прямой. Потом сделали несколько прямолинейных не пересекающихся между собой разрезов, каждый из которых начинался и кончался только в проколотых точках или вершинах квадрата. Оказалось, что квадрат разрезан на треугольники, внутри которых проколов нет. Сколько было сделано разрезов и сколько получилось треугольников?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .