Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 12 задач
Версия для печати
Убрать все задачи

Можно ли расположить в пространстве пять сфер так, чтобы для каждой из сфер можно было провести через ее центр касательную плоскость к остальным четырем сферам? Сферы могут пересекаться и не обязаны иметь одинаковый радиус.

Вниз   Решение


В Чили в феврале проходил международный турнир по футболу. Первое место с 8 очками занял местный клуб "Коло-Коло". На очко отстало московское "Динамо" и заняло второе место. Третье место с 4 очками занял бразильский клуб "Коринтианс". Четвёртое место занял югославский клуб "Црвена Звезда", также набравший 4 очка. Доказать, что по этим данным можно точно определить, сколько ещё команд участвовало в турнире и по сколько очков они набрали. (За победу присуждается 2 очка, за ничью – 1, за поражение – 0.)

ВверхВниз   Решение


Квадратная таблица из 49 клеток заполнена числами от 1 до 7 так, что в каждом столбце и в каждой строке встречаются все эти числа. Докажите, что если таблица симметрична относительно диагонали, идущей из левого верхнего угла в правый нижний, то на этой диагонали встречаются все эти числа.

ВверхВниз   Решение


Постройте прямоугольный треугольник по катету и гипотенузе.

ВверхВниз   Решение


Докажите, что уравнение  xy(x – y) + yz(y – z) + zx(z – x) = 6  имеет бесконечно много решений в целых числах.

ВверхВниз   Решение


Автор: Соколов А.

В остроугольном треугольнике $ABC$ ($AB$<$BC$) провели высоту $BH$. Точка $P$ симметрична точке $H$ относительно прямой, соединяющей середины сторон $AC$ и $BC$. Докажите, что прямая $BP$ содержит центр описанной окружности треугольника $ABC$.

ВверхВниз   Решение


Дан треугольник ABC. Найти геометрическое место таких точек M, что треугольники ABM и BCM – равнобедренные.

ВверхВниз   Решение


Многочлен степени  $n > 1$  имеет $n$ разных корней $х_1$, $х_2$, ..., $х_n$. Его производная имеет корни $y_1$, $y_2$, ..., $y_{n-1}$. Докажите неравенство $$\frac{x_1^2 + \dots + x_n^2}{n} > \frac{y_1^2 + \dots + y_{n-1}^2}{n-1}.$$

ВверхВниз   Решение


Две параболы с различными вершинами являются графиками квадратных трёхчленов со старшими коэффициентами p и q. Известно, что вершина каждой из парабол лежит на другой параболе. Чему может быть равно  p + q?

ВверхВниз   Решение


Докажите, что если центр вписанной в четырехугольник окружности совпадает с точкой пересечения диагоналей, то этот четырехугольник — ромб.

ВверхВниз   Решение


На окружности с центром O даны точки A1,..., An, делящие ее на равные дуги, и точка X. Докажите, что точки, симметричные X относительно прямых OA1,..., OAn, образуют правильный многоугольник.

ВверхВниз   Решение


Во всех клетках таблицы 100×100 стоят плюсы. Разрешается одновременно менять знаки во всех клетках одной строки или же во всех клетках одного столбца. Можно ли, пользуясь только этими операциями, получить ровно 1970 минусов?

Вверх   Решение

Задача 78755
Темы:    [ Числовые таблицы и их свойства ]
[ Делимость чисел. Общие свойства ]
[ Четность и нечетность ]
[ Процессы и операции ]
Сложность: 4-
Классы: 9,10
Из корзины
Прислать комментарий

Условие

Во всех клетках таблицы 100×100 стоят плюсы. Разрешается одновременно менять знаки во всех клетках одной строки или же во всех клетках одного столбца. Можно ли, пользуясь только этими операциями, получить ровно 1970 минусов?


Решение

  Пусть в i-й строке мы изменили знак xi раз, в k-м столбце – yk раз. Тогда в клетке, стоящей на пересечении i-й строки и k-го столбца, знак изменится
xi + yk  раз. Следовательно, в этой клетке будет стоять минус в том и только в том случае, когда  xi + yk  нечётно. Таким образом, общее количество минусов в полученной таблице зависит только от чётности чисел xi и yk. Пусть x – количество нечётных чисел среди xi, y – количество нечётных чисел среди yk. Тогда, как нетрудно посчитать, общее число минусов в таблице будет равно  x(100 – y) + (100 – x)y = 100x + 100y – 2xy.
  Предположим, что нам удалось получить ровно 1970 минусов. Тогда  1970 = 100x + 100y – 2xy,  или  (x – 50)(y – 50) = 1515 = 15·101.
  Поскольку число 101 простое, то либо  х – 50,  либо  y – 50  делится на 101. Но это невозможно, так как  |x − 50| ≤ 50  и  |y − 50| ≤ 50  (равняться нулю эти множители тоже не могут). Противоречие.


Ответ

Нельзя.

Источники и прецеденты использования

журнал
Название "Квант"
год
Год 1970
выпуск
Номер 7
Задача
Номер М32
олимпиада
Название Московская математическая олимпиада
год
Номер 33
Год 1970
вариант
Класс 9
Тур 2
задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .