Страница: 1
2 >> [Всего задач: 6]
|
|
Сложность: 3+ Классы: 8,9,10
|
Через вершину B правильного треугольника ABC проведена прямая l. Окружность ωa с центром Ia касается стороны BC в точке A1 и прямых l и AC. Окружность ωc с центром Ic касается стороны BA в точке C1 и прямых l и AC. Докажите, что ортоцентр треугольника A1BC1 лежит на прямой IaIc.
Дан остроугольный треугольник ABC. Точки H и O – его ортоцентр и центр описанной окружности соответственно. Серединный перпендикуляр к отрезку BH пересекает стороны AB и BC в точках A1 и C1. Докажите, что OB – биссектриса угла A1OC1.
|
|
Сложность: 4- Классы: 9,10
|
Пусть H – ортоцентр остроугольного треугольника ABC. Серединный перпендикуляр к отрезку BH пересекает стороны BA, BC в точках A0, C0 соответственно. Докажите, что периметр треугольника A0OC0 (O – центр описанной окружности треугольника ABC) равен AC.
|
|
Сложность: 4- Классы: 9,10,11
|
Дан выпуклый четырёхугольник ABCD. Пусть ωA, ωB, ωC, ωD – описанные окружности треугольников BCD, ACD, ABD, ABC соответственно. Обозначим через XA произведение степени точки A относительно ωA на площадь треугольника BCD. Аналогично определим XB, XC, XD. Докажите, что XA + XB + XC + XD = 0.
|
|
Сложность: 4 Классы: 10,11
|
Пусть H и O – ортоцентр и центр описанной окружности треугольника ABC. Описанная окружность треугольника AOH, пересекает серединный перпендикуляр к BC в точке A1. Аналогично определяются точки B1 и C1. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.
Страница: 1
2 >> [Всего задач: 6]