ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Около окружности описана равнобедренная трапеция ABCD. Меньшее основание BC касается окружности в точке M, боковая сторона CD – в точке N. Высота CE пересекает отрезок MN в точке P, причём MP : PN = 2. Найдите отношение AD : BC.
В выпуклом четырёхугольнике ABCD точки E, F, H, G являются
соответственно серединами отрезков AB, BC, CD, AD; O — точка
пересечения отрезков EH и FG. Известно, что EH = a, FG = b,
|
Задача 79490
УсловиеНа листе прозрачной бумаги нарисован четырёхугольник. Укажите способ, как сложить этот лист (возможно, в несколько раз), чтобы определить, является ли исходный четырёхугольник квадратом. РешениеСначала выясним, является ли данный четырёхугольник ABCD ромбом (см. задачу 79485). Если ABCD — ромб, то перегнём лист бумаги так, чтобы вершина B совпала с вершиной C. Данный четырёхугольник является квадратом тогда и только тогда, когда вершина D совпадёт с вершиной A. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке