Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 4 задачи
Версия для печати
Убрать все задачи

На бесконечном листе клетчатой бумаги N клеток окрашено в черный цвет. Докажите, что из этого листа можно вырезать конечное число квадратов так, что будут выполняться два условия: 1) все черные клетки лежат в вырезанных квадратах; 2) в любом вырезанном квадрате K площадь черных клеток составит не менее  1/5 и не более  4/5 площади K.

Вниз   Решение


Докажите, что $ {\frac{a+b-c}{a+b+c}}$ = tg$ \left(\vphantom{\frac{\alpha }{2}}\right.$$ {\frac{\alpha }{2}}$$ \left.\vphantom{\frac{\alpha }{2}}\right)$tg$ \left(\vphantom{\frac{\beta }{2}}\right.$$ {\frac{\beta}{2}}$$ \left.\vphantom{\frac{\beta }{2}}\right)$.

ВверхВниз   Решение


Докажите, что площадь любого выпуклого четырехугольника не превосходит полусуммы произведений противоположных сторон.

ВверхВниз   Решение


Дано число: 123456789101112... . Какая цифра стоит на 2000-м месте?

Вверх   Решение

Задача 86510
Темы:    [ Десятичная система счисления ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 2+
Классы: 7,8,9
Из корзины
Прислать комментарий

Условие

Дано число: 123456789101112... . Какая цифра стоит на 2000-м месте?

Решение

Найдем, с какого момента в десятичную запись данного числа начнут входить трехзначные числа: 2000 - 9 . 1 - 90 . 2 = 1811.
1811 : 3 = 603 (остаток 2), то есть на 2000-м месте стоит вторая цифра 604-го по счету трехзначного числа. Это число — 703, поэтому искомая цифра — 0.

Ответ

Искомая цифра — 0.

Источники и прецеденты использования

олимпиада
Название Московская математическая регата
год
Год 2000/01
класс
Класс 9
задача
Номер 1.3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .