Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

Один треугольник лежит внутри другого.
Докажите, что хотя бы одна из двух наименьших сторон (из шести) является стороной внутреннего треугольника.

Вниз   Решение


Автор: Сафин С.

Петя и Вася играют в следующую игру. Петя загадывает натуральное число x с суммой цифр 2012. За один ход Вася выбирает любое натуральное число a и узнаёт у Пети сумму цифр числа  |x – a|.  Какое минимальное число ходов необходимо сделать Васе, чтобы гарантированно определить x?

ВверхВниз   Решение


Автор: Карасев Р.

2011 складов соединены дорогами так, что от каждого склада можно проехать к любому другому, возможно, проехав по нескольким дорогам. На складах находится по  x1, ..., x2011  кг цемента соответственно. За один рейс можно провезти с произвольного склада на другой по соединяющей их дороге произвольное количество цемента. В итоге на складах по плану должно оказаться по  y1, ..., y2011  кг цемента соответственно, причём
x1 + x2 + ... + x2011 = y1 + y2 + ... + y2011. За какое минимальное количество рейсов можно выполнить план при любых значениях чисел xi и yi и любой схеме дорог?

ВверхВниз   Решение


Петя тратит ⅓ своего времени на игру в футбол, ⅕ – на учебу в школе, ⅙ – на просмотр кинофильмов, 1/70 – на решение олимпиадных задач и ⅓ – на сон. Можно ли так жить?

ВверхВниз   Решение


31-го декабря Антон сказал, что после Нового Года всё, сказанное им до Нового Года станет ложью. Правду ли он сказал?

ВверхВниз   Решение


В трапеции ABCD с основаниями AD и BC лучи AB и DC пересекаются в точке K. Точки P и Q – центры описанных окружностей треугольников ABD и BCD. Докажите, что  ∠PKA = ∠QKD.

ВверхВниз   Решение


Даны 16 чисел: 1, 11, 21, 31 и т.д. (каждое следующее на 10 больше предыдущего).
Можно ли расставить их в таблице 4×4 так, чтобы разность каждых двух чисел, стоящих в соседних по стороне клетках, не делилась на 4?

Вверх   Решение

Задача 88140
Темы:    [ Числовые таблицы и их свойства ]
[ Деление с остатком ]
[ Примеры и контрпримеры. Конструкции ]
[ Шахматная раскраска ]
Сложность: 2
Классы: 5,6,7
Из корзины
Прислать комментарий

Условие

Даны 16 чисел: 1, 11, 21, 31 и т.д. (каждое следующее на 10 больше предыдущего).
Можно ли расставить их в таблице 4×4 так, чтобы разность каждых двух чисел, стоящих в соседних по стороне клетках, не делилась на 4?


Подсказка

Обратите внимание: разность чисел в соседних клетках может быть 10, 30, 50 и т.д. и не может быть 20, 40, 60 и т.д.


Решение

Один из вариантов приведён в таблице.


Ответ

Можно.

Замечания

Идеология. Половина наших чисел при делении на 4 даёт остаток 1, а половина – остаток 3. Раскрасим таблицу в шахматном порядке, в чёрные клетки поставим числа с остатком 1, а в белые – остальные.

Источники и прецеденты использования

книга
Автор Козлова Е.Г.
Название Сказки и подсказки
задача
Номер 208

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .