Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 11 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

На экране компьютера горит число, которое каждую минуту увеличивается на 102. Начальное значение числа 123. Программист Федя имеет возможность в любой момент изменять порядок цифр числа, находящегося на экране. Может ли он добиться того, чтобы число никогда не стало четырёхзначным?

Вниз   Решение


Выпуклые многогранники A и B не имеют общих точек. Многогранник A имеет ровно 2012 плоскостей симметрии. Каково наибольшее возможное количество плоскостей симметрии у фигуры, состоящей из A и B, если B имеет
  а) 2012,
  б) 2013 плоскостей симметрии?
  в) Каков будет ответ в пункте б), если плоскости симметрии заменить на оси симметрии?

ВверхВниз   Решение


Расстояние между Атосом и Арамисом, скачущими по одной дороге, равно 20 лье. За час Атос покрывает 4 лье, а Арамис – 5 лье.
Какое расстояние будет между ними через час?

ВверхВниз   Решение


Я иду от дома до школы 30 минут, а мой брат – 40 минут. Через сколько минут я догоню брата, если он вышел из дома на 5 минут раньше меня?

ВверхВниз   Решение


Турист шел 3,5 часа, причём за каждый промежуток времени в один час он проходил ровно 5 км.
Следует ли из этого, что его средняя скорость равна 5 км/час?

ВверхВниз   Решение


Три окружности касаются друг друга извне и касаются четвёртой окружности изнутри. Их центры были отмечены, а сами окружности стёрты. Оказалось, что невозможно установить, какая из отмеченных точек – центр объемлющей окружности. Докажите, что отмеченные точки образуют прямоугольник.

ВверхВниз   Решение


Трапеция АВСD с основаниями AB и CD вписана в окружность. Докажите, что четырёхугольник, образованный ортогональными проекциями любой точки этой окружности на прямые AC, BC, AD и BD, является вписанным.

ВверхВниз   Решение


а) Электрическая схема имеет вид решётки 3×3: всего в схеме 16 узлов (вершины квадратиков решётки), которые соединены проводами (стороны квадратиков решётки). Возможно, часть проводов перегорела. За одно измерение можно выбрать любую пару узлов схемы и проверить, проходит ли между ними ток (то есть, проверить, существует ли цепочка неперегоревших проводов, соединяющая эти узлы). В действительности схема такова, что ток проходит от любого узла к любому. За какое наименьшее число измерений всегда можно в этом удостовериться?

б) Тот же вопрос для решётки 7×7 (всего 64 узла).

ВверхВниз   Решение


Существует ли неравнобедренный треугольник, у которого медиана, проведённая из одной вершины, биссектриса, проведённая из другой, и высота, проведённая из третьей, равны?

ВверхВниз   Решение


Андрей ведёт машину со скоростью 60 км/ч. Он хочет проезжать каждый километр на 1 минуту быстрее. На сколько ему следует увеличить скорость?

ВверхВниз   Решение


Среди 40 кувшинов, с которыми атаман разбойников приехал в гости к Али-Бабе, нашлись два кувшина разной формы и два кувшина разного цвета. Докажите, что среди них найдутся два кувшина одновременно и разной формы и разного цвета.

Вверх   Решение

Задача 88271
Тема:    [ Математическая логика (прочее) ]
Сложность: 2-
Классы: 5,6,7
Из корзины
Прислать комментарий

Условие

Среди 40 кувшинов, с которыми атаман разбойников приехал в гости к Али-Бабе, нашлись два кувшина разной формы и два кувшина разного цвета. Докажите, что среди них найдутся два кувшина одновременно и разной формы и разного цвета.

Подсказка

Попробуйте рассмотреть два кувшина разной формы.

Решение

Выберем два кувшина разной формы. Если они при этом различаются по цвету, то задача решена. Если же они оказались одного цвета, тогда возьмём любой кувшин, не совпадающий с ними по цвету. Этот третий кувшин не будет совпадать с одним из двух наших кувшинов и по форме. Эти два кувшина (третий и тот, который не совпадает с ним по форме) и будут искомыми кувшинами.

Источники и прецеденты использования

книга
Автор Козлова Е.Г.
Название Сказки и подсказки
задача
Номер 339

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .