Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 5 задач
Версия для печати
Убрать все задачи

Докажите, что в прямоугольном треугольнике с углом 30 градусов одна биссектриса в два раза короче другой.

Вниз   Решение


В таблице 2005×2006 расставлены числа 0, 1, 2 так, что сумма чисел в каждом столбце и в каждой строке делится на 3.
Какое наибольшее возможное количество единиц может быть в этой таблице?

ВверхВниз   Решение


Автор: Паровян А.

Пусть в прямоугольном треугольнике AB и AC – катеты,  AC > AB.  На AC выбрана точка E, а на BC – точка D так, что  AB = AE = BD.
Докажите, что треугольник ADE прямоугольный тогда и только тогда, когда стороны треугольника ABC относятся как  3 : 4 : 5.

ВверхВниз   Решение


В параллелограмме ABCD точка E – середина AD. Точка F – основание перпендикуляра, опущенного из B на прямую CE.
Докажите, что треугольник ABF – равнобедренный.

ВверхВниз   Решение


Автор: Бона М.

В футбольном турнире в один круг участвовало 28 команд. По окончании турнира оказалось, что более ¾ всех игр закончилось вничью.
Докажите, что какие-то две команды набрали поровну очков.

Вверх   Решение

Задача 97918
Темы:    [ Турниры и турнирные таблицы ]
[ Доказательство от противного ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 10,11
Из корзины
Прислать комментарий

Условие

Автор: Бона М.

В футбольном турнире в один круг участвовало 28 команд. По окончании турнира оказалось, что более ¾ всех игр закончилось вничью.
Докажите, что какие-то две команды набрали поровну очков.


Решение

Менее  ¼·½·28·27 = 94,5  игр были результативными. Вычтем из всех результатов по очку, то есть будем считать, что за выигрыш дается 1 очко, а за проигрыш –  –1. Если команда набрала n очков, то она выиграла (или проиграла, если  n < 0)  не менее |n| матчей. Пусть nk – число очков, набранных k-й командой. Предположим, что все числа nk различны. Тогда число результативных игр не меньше чем
½ ( |n1| + … + |n28| ) ≥ ½ (0 + 1 + ... + 13 + 1 + ... + 14) = 98.  Противоречие.

Замечания

1. Баллы: 7-8 кл. – 6, 9-10 кл. – 5.

2. Ср. с задачей М1047 из Задачника "Кванта".

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 1986/1987
Номер 8
вариант
Вариант осенний тур, 9-10 класс
Задача
Номер 5
олимпиада
Название Турнир городов
Турнир
Дата 1986/1987
Номер 8
вариант
Вариант осенний тур, 7-8 класс
Задача
Номер 6

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .