ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 97944
Темы:    [ Алгебраические неравенства (прочее) ]
[ Тождественные преобразования ]
[ Разложение на множители ]
[ Формулы сокращенного умножения (прочее) ]
[ Неравенство Коши ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Даны три неотрицательных числа a, b, c. Про них известно, что   a4 + b4 + c4 ≤ 2(a²b² + b²c² + c²a²).
  а) Докажите, что каждое из них не больше суммы двух других.
  б) Докажите, что   a² + b² + c² ≤ 2(ab + bc + ca).
  в) Следует ли из неравенства пункта б) исходное неравенство?


Решение

  а)  0 ≥ a4 + b4 + c4 – 2(a²b² + b²c² + c²a²) = (a² – b² – c²)² – 4b²c² = (a² – b² – c² – 2bc)(a² – b² – c² + 2bc) =
        = (a² – (b + c)²)(a² – (b – c)²) = (a – b – c)(a + b + c)(a – b + c)(a + b – c).
  Пусть a – наибольшее из чисел. Тогда последние три множителя неотрицательны, значит,  a – b – c ≤ 0.

  б)  (a² + b² + c²)² = a4 + b4 + c4 + 2(a²b² + b²c² + c²a²) ≤ 4(a²b² + b²c² + c²a²) ≤ 4(ab + bc + ca)².  Отсюда  (a² + b² + c²) ≤ 2(ab + bc + ca).

  в) Контрпример:  a = 3,  b = c = 1.


Ответ

в) Не следует.

Замечания

1. Баллы: 3 + 2 + 2.

2. Ср. с задачей М1094 из Задачника "Кванта".

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 9
Дата 1987/1988
вариант
Вариант осенний тур, 7-8 класс
Задача
Номер 5

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .