ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что в прямоугольном треугольнике с углом $30$ градусов одна биссектриса в два раза короче другой. В таблице 2005×2006 расставлены числа 0, 1, 2 так, что сумма чисел в каждом столбце и в каждой строке делится на 3. Пусть в прямоугольном треугольнике AB и AC – катеты, AC > AB. На AC выбрана точка E, а на BC – точка D так, что AB = AE = BD. В параллелограмме ABCD точка E – середина AD. Точка F – основание перпендикуляра, опущенного из B на прямую CE. В футбольном турнире в один круг участвовало 28 команд. По окончании турнира
оказалось, что более ¾ всех игр закончилось вничью. Существуют ли такие 100 треугольников, ни один из которых нельзя покрыть 99 остальными? Имеется 25 кусков сыра разного веса. Всегда ли можно один из этих кусков разрезать на две части и разложить сыр в два пакета так, что части разрезанного куска окажутся в разных пакетах, веса пакетов будут одинаковы и число кусков в пакетах также будет одинаково? Числа 1, 2, 3, ..., 25 расставляют в таблицу 5×5 так, чтобы в каждой строке числа были расположены в порядке возрастания. |
Задача 98197
УсловиеЧисла 1, 2, 3, ..., 25 расставляют в таблицу 5×5 так, чтобы в каждой строке числа были расположены в порядке возрастания. Решение Оценка. Сумма чисел трёх первых столбцов не меньше суммы первых 15 натуральных чисел, то есть не меньше 120. Аналогичное рассуждение даёт максимальную сумму 85 (рассматривается наибольшая возможная сумма чисел трёх последних столбцов). ОтветНаименьшее – 45, наибольшее – 85. Замечания1. 5 баллов. 2. Ср. с задачей 73704. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке