ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 98202
Темы:    [ Разрезания на части, обладающие специальными свойствами ]
[ Выпуклые многоугольники ]
[ Средние величины ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Доказательство от противного ]
[ Формула Эйлера. Эйлерова характеристика ]
Сложность: 4
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Выпуклый 1993-угольник разрезан на выпуклые семиугольники.
Докажите, что найдутся четыре соседние вершины 1993-угольника, принадлежащие одному семиугольнику.
(Вершина семиугольника не может лежать внутри стороны 1993-угольника.)


Решение

См. задачу 64676.

Замечания

6 баллов

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 15
Дата 1993/1994
вариант
Вариант осенний тур, основной вариант, 10-11 класс
Задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .