Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

Из точки C, лежащей вне окружности с центром O, проведены два луча, пересекающие окружность: первый — в точках M и A, второй — в точках N и B. При этом точка N лежит между точками B и C. Углы MOA и NOB равны 120o. Перпендикуляр NL, опущенный из точки N на прямую AB, равен 12. Отрезок MN в 5 раз меньше отрезка AB. Найдите площадь треугольника MNC.

Вниз   Решение


На окружности отметили n точек, разбивающие её на n дуг. Окружность повернули вокруг центра на угол k/n (при некотором натуральном k), в результате чего отмеченные точки перешли в n новых точек, разбивающих окружность на n новых дуг.
Докажите, что найдётся новая дуга, которая целиком лежит в одной из старых дуг. (Считается, что концы дуги ей принадлежат.)

ВверхВниз   Решение


Окружность, построенная на катете прямоугольного треугольника как на диаметре, делит гипотенузу в отношении  1 : 3.  Найдите острые углы треугольника.

ВверхВниз   Решение


Для того, чтобы застеклить 15 окон различных размеров и форм, заготовлено 15 стекол в точности по окнам (окна такие, что в каждом окне должно быть одно стекло). Стекольщик, не зная, что стекла подобраны, работает так: он подходит к очередному окну и перебирает неиспользованные стекла до тех пор, пока не найдет достаточно большое (то есть либо в точности подходящее, либо такое, из которого можно вырезать подходящее), если же такого стекла нет, то переходит к следующему окну, и так, пока не обойдет все окна. Составлять стекло из нескольких частей нельзя. Какое максимальное число окон может остаться незастекленными?

ВверхВниз   Решение


Через центр O описанной окружности остроугольного треугольника ABC, проведена прямая, перпендикулярная BO и пересекающая отрезок AB в точке P и продолжение отрезка BC за точку C в точке Q. Найдите BP, если известно, что  AB = c,  BC = a  и  BQ = p.

ВверхВниз   Решение


Решить в целых числах уравнение  x³ – 2y³ – 4z³ = 0.

ВверхВниз   Решение


В стране каждые два города соединены дорогой с односторонним движением. Доказать, что можно проехать по всем городам, побывав в каждом по одному разу (то есть что в полном ориентированном графе есть гамильтонов путь).

ВверхВниз   Решение


Дима придумал секретный шифр: каждая буква заменяется на слово длиной не больше 10 букв. Шифр называется хорошим, если всякое зашифрованное слово расшифровывается однозначно. Серёжа убедился (с помощью компьютера), что если зашифровать слово длиной не больше 10000 букв, то результат расшифровывается однозначно. Следует ли из этого, что шифр хороший? (В алфавите 33 буквы, под "словом" мы понимаем любую последовательность букв, независимо от того, имеет ли она смысл.)

Вверх   Решение

Задача 98375
Темы:    [ Криптография ]
[ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
[ Принцип крайнего (прочее) ]
Сложность: 5-
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

Дима придумал секретный шифр: каждая буква заменяется на слово длиной не больше 10 букв. Шифр называется хорошим, если всякое зашифрованное слово расшифровывается однозначно. Серёжа убедился (с помощью компьютера), что если зашифровать слово длиной не больше 10000 букв, то результат расшифровывается однозначно. Следует ли из этого, что шифр хороший? (В алфавите 33 буквы, под "словом" мы понимаем любую последовательность букв, независимо от того, имеет ли она смысл.)


Решение

  Предположим, что это не так: некоторые шифровки декодируются неоднозначно. Выберем самую короткую такую шифровку. По условию в ней более 10000 букв.
  Назовём полусловом несколько (но не ноль и не все) первых букв слова, кодирующего букву. Ясно, что различных полуслов не больше чем
9·33 = 297.
  Декодирование шифровки определяется позициями между буквами, в которых она делится на слова, кодирующие буквы. Отметим эти позиции в первом случае красным, а во втором – синим цветом (красные и синие разделители нигде не совпадают, иначе можно было бы отбросить часть шифровки до или после этих разделителей, получив более короткую "неоднозначную" шифровку). Рассмотрим для каждого красного разделителя слово, образованное этим разделителем и последним синим разделителем, стоящим перед этим красным (или началом шифровки, если таких синих разделителей нет). Ясно, что это полуслово. Какие-то два таких полуслова совпадают (шифрующих слов у нас не менее 1001, поэтому красных разделителей – не менее  1000 > 297).  Значит, кусок между соответствующими красными разделителями можно выкинуть, получив новую (более короткую) "неоднозначную" шифровку. Противоречие.


Ответ

Следует.

Замечания

8 баллов

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 1997/1998
Номер 19
вариант
Вариант осенний тур, основной вариант, 10-11 класс
Задача
Номер 5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .