ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 98379  (#1)

Темы:   [ Точка Лемуана ]
[ Разложение на множители ]
Сложность: 4-
Классы: 8,9

CM и BN – медианы треугольника ABC, P и Q – такие точки соответственно на AB и AC, что биссектриса угла C треугольника одновременно является биссектрисой угла MCP, а биссектриса угла B – биссектрисой угла NBQ. Оказалось, что  AP = AQ.  Следует ли из этого, что треугольник ABC равнобедренный?

Прислать комментарий     Решение


Задача 98372  (#2)

Темы:   [ Произвольные многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
[ Движения (прочее) ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 4
Классы: 10,11

Верны ли утверждения:
  а) Если многоугольник можно разбить ломаной на два равных многоугольника, то его можно разбить отрезком на два равных многоугольника.
  б) Если выпуклый многоугольник можно разбить ломаной на два равных многоугольника, то его можно разбить отрезком на два равных многоугольника.
  в) Если выпуклый многоугольник можно разбить ломаной на два многоугольника, которые можно перевести друг в друга движением, сохраняющим ориентацию (то есть поворотом или параллельным переносом), то его можно разбить отрезком на два многоугольника, которые можно перевести друг в друга таким же движением.

Прислать комментарий     Решение

Задача 98373  (#3)

Темы:   [ Доказательство тождеств. Преобразования выражений ]
[ Целочисленные и целозначные многочлены ]
[ Симметрия и инволютивные преобразования ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 9,10

Перемножаются все выражения вида     (при всевозможных комбинациях знаков).
Докажите, что результат   а) целое число,   б) квадрат целого числа.

Прислать комментарий     Решение

Задача 98374  (#4)

Темы:   [ Замощения костями домино и плитками ]
[ Правильные многоугольники ]
[ Центральная симметрия помогает решить задачу ]
[ Малые шевеления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5-
Классы: 10,11

а) На стол положили (с перекрытиями) несколько одинаковых салфеток, имеющих форму правильного шестиугольника, причём у всех салфеток одна сторона параллельна одной и той же прямой. Всегда ли можно вбить в стол несколько гвоздей так, что все салфетки будут прибиты, причём каждая – только одним гвоздём?
б) Тот же вопрос про правильные пятиугольники.

Прислать комментарий     Решение

Задача 98375  (#5)

Темы:   [ Криптография ]
[ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
[ Принцип крайнего (прочее) ]
Сложность: 5-
Классы: 8,9,10

Дима придумал секретный шифр: каждая буква заменяется на слово длиной не больше 10 букв. Шифр называется хорошим, если всякое зашифрованное слово расшифровывается однозначно. Серёжа убедился (с помощью компьютера), что если зашифровать слово длиной не больше 10000 букв, то результат расшифровывается однозначно. Следует ли из этого, что шифр хороший? (В алфавите 33 буквы, под "словом" мы понимаем любую последовательность букв, независимо от того, имеет ли она смысл.)

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .