Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Существует ли выпуклый 1000-угольник, у которого все углы выражаются целыми числами градусов?

Вниз   Решение


Вася сложил четвёртую степень и квадрат некоторого числа, отличного от нуля, и сообщил результат Пете.
Сможет ли Петя однозначно определить Васино число?

ВверхВниз   Решение


Соедините точки А и В (см. рисунок) ломаной из четырёх отрезков одинаковой длины так, чтобы выполнялись следующие условия:
  1) концами отрезков могут быть только какие-то из отмеченных точек;
  2) внутри отрезков не должно быть отмеченных точек;
  3) соседние отрезки не должны лежать на одной прямой.

Вверх   Решение

Задача 98614
Темы:    [ Целочисленные и целозначные многочлены ]
[ Теорема Виета ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Вася пишет на доске квадратное уравнение  ax² + bx + c = 0  с натуральными коэффициентами a, b, c. После этого Петя, если хочет, может заменить один или два знака "+" на "–". Если у получившегося уравнения оба корня целые, то выигрывает Вася, если же корней нет или хотя бы один из них нецелый – Петя. Может ли Вася подобрать коэффициенты уравнения так, чтобы наверняка выиграть у Пети?


Решение

См. задачу 105156.


Ответ

Может.

Замечания

4 балла

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 2002/2003
Номер 24
вариант
Вариант весенний тур, основной вариант, 8-9 класс
Задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .