ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Бахарев Ф.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 2]      



Задача 109691

Тема:   [ Теория игр (прочее) ]
Сложность: 4
Классы: 7,8,9,10

Автор: Бахарев Ф.

На столе стоят три пустых банки из-под меда. Винни-Пух, Кролик и Пятачок по очереди кладут по одному ореху в одну из банок. Их порядковые номера до начала игры определяются жребием. При этом Винни может добавлять орех только в первую или вторую банку, Кролик – только во вторую или третью, а Пятачок – в первую или третью.
Тот, после чьего хода в какой-нибудь банке оказалось ровно 1999 орехов, проигрывает.
Докажите, что Винни-Пух и Пятачок могут, договорившись, играть так, чтобы Кролик проиграл.
Прислать комментарий     Решение


Задача 109843

Темы:   [ Сфера, описанная около тетраэдра ]
[ Теорема о трех перпендикулярах ]
[ Высота пирамиды (тетраэдра) ]
[ Теорема Пифагора в пространстве ]
Сложность: 5
Классы: 10,11

Автор: Бахарев Ф.

Окружность с центром I , вписанная в грань ABC треугольной пирамиды SABC , касается отрезков AB , BC , CA в точках D , E , F соответственно. На отрезках SA , SB , SC отмечены соответственно точки A' , B' , C' так, что AA'=AD , BB'=BE , CC'=CF ; S' – точка на описанной сфере пирамиды, диаметрально противоположная точке S . Известно, что SI является высотой пирамиды. Докажите, что точка S' равноудалена от точек A' , B' , C' .
Прислать комментарий     Решение


Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .