ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Марачёв А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 2]      



Задача 65563

Тема:   [ Теория игр (прочее) ]
Сложность: 3+
Классы: 9,10,11

Автор: Марачёв А.

Двое играют в следующую игру. Есть кучка камней. Первый каждым своим ходом берет 1 или 10 камней. Второй каждым своим ходом берет m или n камней. Ходят по очереди, начинает первый. Тот, кто не может сделать хода, проигрывает. Известно, что при любом начальном количестве камней первый всегда может играть так, чтобы выиграть (при любой игре второго). Какими могут быть m и n?

Прислать комментарий     Решение

Задача 64656

Темы:   [ Наглядная геометрия в пространстве ]
[ Комбинаторная геометрия (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Связность и разложение на связные компоненты ]
[ Проектирование помогает решить задачу ]
Сложность: 4-
Классы: 8,9

Автор: Марачёв А.

Из кубиков 1×1×1 склеен куб 3×3×3. Какое наибольшее количество кубиков можно из него выкинуть, чтобы осталась фигура с такими двумя свойствами:
  - со стороны каждой грани исходного куба фигура выглядит как квадрат 3×3 (глядя перпендикулярно этой грани, мы не увидим просвета – видны 9 кубиков фигуры);
  - переходя в фигуре от кубика к кубику через их общую грань, можно от каждого кубика добраться до любого другого?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .