ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 66]      



Задача 30415

Тема:   [ Связность и разложение на связные компоненты ]
Сложность: 2
Классы: 6,7

Между девятью планетами Солнечной системы введено космическое сообщение. Ракеты летают по следующим маршрутам: Земля – Меркурий, Плутон – Венера, Земля – Плутон, Плутон – Меркурий, Меркурий – Венера, Уран – Нептун, Нептун – Сатурн, Сатурн – Юпитер, Юпитер – Марс и Марс – Уран. Можно ли добраться с Земли до Марса?

Прислать комментарий     Решение

Задача 30417

Тема:   [ Связность и разложение на связные компоненты ]
Сложность: 2
Классы: 6,7

В стране Цифра есть 9 городов с названиями 1, 2, 3, 4, 5, 6, 7, 8, 9. Путешественник обнаружил, что два города соединены авиалинией в том и только в том случае, если двузначное число, составленное из цифр-названий этих городов, делится на 3. Можно ли добраться из города 1 в город 9?

Прислать комментарий     Решение

Задача 30427

Тема:   [ Связность и разложение на связные компоненты ]
Сложность: 2
Классы: 6,7

В стране Семёрка 15 городов, каждый из которых соединён дорогами не менее, чем с семью другими.
Докажите, что из каждого города можно добраться до любого другого (возможно, проезжая через другие города).

Прислать комментарий     Решение

Задача 30428

Тема:   [ Связность и разложение на связные компоненты ]
Сложность: 3
Классы: 7,8

Докажите, что граф с n вершинами, степень каждой из которых не менее n–1/2, связен.

Прислать комментарий     Решение

Задача 30429

Темы:   [ Связность и разложение на связные компоненты ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3
Классы: 7,8

В Тридевятом царстве лишь один вид транспорта – ковер-самолет. Из столицы выходит 21 ковролиния, из города Дальний – одна, а из всех остальных городов – по 20. Докажите, что из столицы можно долететь в Дальний (возможно, с пересадками).

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 66]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .