ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 360]      



Задача 34913

Темы:   [ Доказательство от противного ]
[ Перебор случаев ]
Сложность: 2+
Классы: 7,8

Среди любых десяти из шестидесяти ребят найдутся трое одноклассников. Докажите, что среди всех них найдутся 15 одноклассников.
Прислать комментарий     Решение


Задача 103976

Темы:   [ Доказательство от противного ]
[ Объединение, пересечение и разность множеств ]
Сложность: 2+
Классы: 5,6,7

Юра, Лёша и Миша коллекционируют марки. Количество Юриных марок, которых нет у Лёши, меньше, чем количество марок, которые есть и у Юры, и у Лёши. Точно так же, число Лёшиных марок, которых нет у Миши, меньше, чем число марок, которые есть и у Лёши и у Миши. А число Мишиных марок, которых нет у Юры, меньше, чем число марок, которые есть и у Юры и у Миши. Докажите, что какая-то марка есть у каждого из трех мальчиков.
Прислать комментарий     Решение


Задача 35422

Тема:   [ Доказательство от противного ]
Сложность: 3
Классы: 8,9,10

1000 яблок разложены в несколько корзин. Можно убирать корзины и вынимать яблоки из корзин. Докажите, что можно добиться того, чтобы во всех корзинах стало поровну яблок и общее число оставшихся яблок было не меньше 100.
Прислать комментарий     Решение


Задача 73633

Темы:   [ Доказательство от противного ]
[ Обратный ход ]
[ Числовые таблицы и их свойства ]
[ Рекуррентные соотношения ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 7,8,9

  а) Докажите, что в таблице

где каждое число равно сумме трёх стоящих над ним чисел, в каждой строке (начиная с третьей) есть чётное число.
  б) В каждой ли строке (кроме первых двух) встречается число, кратное 3?

Прислать комментарий     Решение

Задача 79335

Темы:   [ Доказательство от противного ]
[ Делимость чисел. Общие свойства ]
[ Раскраски ]
Сложность: 3+
Классы: 6,7,8,9

Каждая точка числовой оси, координата которой – целое число, покрашена либо в красный, либо в синий цвет. Доказать, что найдётся цвет со следующим свойством: для каждого натурального числа k имеется бесконечно много точек этого цвета, координаты которых делятся на k.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 360]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы, Московского института открытого образования и ФЦП "Кадры" .