ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Найдите (xn – 1, xm – 1). Есть 20 карточек, у каждой из которых на двух сторонах написано по числу. При этом все числа от 1 до 20 написаны по два раза. Криволинейный многоугольник – это многоугольник, стороны которого – дуги окружностей. Существуют ли такой криволинейный многоугольник P и такая точка A на его границе, что каждая прямая, проходящая через точку A, делит периметр многоугольника P на два куска равной длины? Разрежьте круг на несколько равных частей так, чтобы центр круга не лежал на границе хотя бы одной из них. Пусть (P(x), Q(x)) = D(x). Докажите, что x² + y² + z² ≥ xy + yz + zx при любых x, y, z. Требуется записать число вида 7...7, используя только семёрки (их можно писать и по одной, и по нескольку штук подряд), причём разрешены только сложение, вычитание, умножение, деление и возведение в степень, а также скобки. Для числа 77 самая короткая запись – это просто 77. А существует ли число вида 7...7, которое можно записать по этим правилам, используя меньшее количество семёрок, чем в его десятичной записи? Дан прямоугольный треугольник с гипотенузой AC, проведена биссектриса треугольника BD; отмечены середины E и F дуг BD окружностей, описанных около треугольников ADB и CDB соответственно (сами окружности не проведены). Постройте одной линейкой центры окружностей. Докажите, что 2(x² + y²) ≥ (x + y)² при любых x и y. Четырехугольник ABCD вписанный. Докажите, что Внутри выпуклой фигуры с площадью S и полупериметром p лежит n
узлов решетки. Докажите, что n > S - p.
Начало координат является центром симметрии
выпуклой фигуры площадью более 4. Докажите, что эта
фигура содержит хотя бы одну точку с целыми координатами,
отличную от начала координат.
|
Страница: 1 [Всего задач: 5]
Начало координат является центром симметрии
выпуклой фигуры площадью более 4. Докажите, что эта
фигура содержит хотя бы одну точку с целыми координатами,
отличную от начала координат.
а) Во всех узлах целочисленной решетки, кроме одного,
в котором находится охотник, растут деревья, стволы которых
имеют радиус r. Докажите, что охотник не сможет увидеть
зайца, находящегося от него на расстоянии больше 1/r.
Внутри выпуклой фигуры с площадью S и полупериметром p нет точек
целочисленной решётки. Докажите, что S
Выпуклая фигура
Внутри выпуклой фигуры с площадью S и полупериметром p лежит n
узлов решетки. Докажите, что n > S - p.
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке