ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 416]      



Задача 104103

Тема:   [ Задачи на проценты и отношения ]
Сложность: 2
Классы: 7,8,9

Остап Бендер и Киса Воробьянинов разделили между собой выручку от продажи слонов населению. Остап подумал: если бы я взял денег на 40% больше, то доля Кисы уменьшилась бы на 60%. А как изменилась бы доля Воробьянинова, если бы Остап взял себе денег на 50% больше?

Прислать комментарий     Решение

Задача 109478

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Текстовые задачи (прочее) ]
Сложность: 2
Классы: 5,6,7,8

Петя и Вася участвовали в велогонке. Все участники стартовали одновременно и показали на финише различное время. Петя финишировал сразу после Васи и оказался на десятом месте. Сколько человек участвовало в гонке, если Вася был пятнадцатым с конца?

Прислать комментарий     Решение

Задача 109481

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Задачи на движение ]
Сложность: 2
Классы: 5,6,7,8

Коля и его сестра Маша пошли в гости. Пройдя четверть пути, Коля вспомнил, что они забыли дома подарок и повернул обратно, а Маша пошла дальше. Маша пришла в гости через 20 минут после выхода из дома. На сколько минут позже пришёл в гости Коля, если известно, что они все время шли с одинаковыми скоростями?

Прислать комментарий     Решение

Задача 111245

Тема:   [ Логика и теория множеств ]
Сложность: 2
Классы: 11

Обозначим две какие-нибудь цифры буквами А и Х . Докажите, что шестизначное число ХАХАХА делится на 7 без остатка.
Прислать комментарий     Решение


Задача 115452

Тема:   [ Исследование квадратного трехчлена ]
Сложность: 2
Классы: 10

Известно, что при любом положительном значении р все корни уравнения (с переменной x ) ах2-3х+р = 0 положительны. Докажите, что а = 0.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 416]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .