ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 61199

Тема:   [ Тригонометрия (прочее) ]
Сложность: 2+
Классы: 9,10

Вычислите следующие произведения:
а) sin 20osin 40osin 60osin 80o;
б) cos 20ocos 40ocos 60ocos 80o.

Прислать комментарий     Решение

Задача 61215

Темы:   [ Тригонометрия (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 2+
Классы: 9,10,11

Докажите, что функция cos$ \sqrt{x}$ не является периодической.

Прислать комментарий     Решение

Задача 61216

Темы:   [ Тригонометрия (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 3-
Классы: 9,10

При каких целых значениях n функция

y = cos nx . sin$\displaystyle {\dfrac{5}{n}}$x

имеет период 3$ \pi$?

Прислать комментарий     Решение

Задача 61203

Тема:   [ Тригонометрия (прочее) ]
Сложность: 3
Классы: 9,10

Докажите равенство:

tg 20o . tg 40o . tg 80o = $\displaystyle \sqrt{3}$.


Прислать комментарий     Решение

Задача 61213

Темы:   [ Тригонометрия (прочее) ]
[ Возрастание и убывание. Исследование функций ]
Сложность: 3
Классы: 9,10

Найдите наибольшее и наименьшее значения функций
а) f1(x) = a cos x + b sin x;
б) f2(x) = a cos2x + b cos x sin x + c sin2x.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .