ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 107768

Темы:   [ Возрастание и убывание. Исследование функций ]
[ Производная и экстремумы ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 4
Классы: 10,11

В круглый бокал, осевое сечение которого — график функции y = x4, опускают вишенку — шар радиуса r. При каком наибольшем r шар коснется нижней точки дна? (Другими словами, каков максимальный радиус r круга, лежащего в области y$ \ge$x4 и содержащего начало координат?)
Прислать комментарий     Решение


Задача 79504

Тема:   [ Возрастание и убывание. Исследование функций ]
Сложность: 5-
Классы: 10,11

Найдите минимум по всем α, β максимума функции

y(x) = |cos x + α cos 2x + β cos 3x|.

Прислать комментарий     Решение

Задача 61213

Темы:   [ Тригонометрия (прочее) ]
[ Возрастание и убывание. Исследование функций ]
Сложность: 3
Классы: 9,10

Найдите наибольшее и наименьшее значения функций
а) f1(x) = a cos x + b sin x;
б) f2(x) = a cos2x + b cos x sin x + c sin2x.

Прислать комментарий     Решение

Задача 64894

Темы:   [ Системы тригонометрических уравнений и неравенств ]
[ Возрастание и убывание. Исследование функций ]
Сложность: 3+
Классы: 10,11

Решите систему уравнений:   .

Прислать комментарий     Решение

Задача 66009

Темы:   [ Иррациональные уравнения ]
[ Возрастание и убывание. Исследование функций ]
Сложность: 3+
Классы: 10,11

Решите уравнение  f(f(x)) = f(x),  если  

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .