ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 21]      



Задача 111360

Темы:   [ Кооперативные алгоритмы ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8,9

Фокусник с завязанными глазами выдаёт зрителю пять карточек с номерами от 1 до 5. Зритель прячет две карточки, а три отдаёт ассистенту фокусника. Ассистент указывает зрителю на две из них, и зритель называет номера этих карточек фокуснику (в том порядке, в каком захочет). После этого фокусник угадывает номера карточек, спрятанных у зрителя. Как фокуснику и ассистенту договориться, чтобы фокус всегда удавался?

Прислать комментарий     Решение

Задача 111355

Темы:   [ Кооперативные алгоритмы ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 10,11

Фокусник с завязанными глазами выдаёт зрителю 29 карточек с номерами от 1 до 29. Зритель прячет две карточки, а остальные отдаёт ассистенту фокусника. Ассистент указывает зрителю на две из них, и зритель называет номера этих карточек фокуснику (в том порядке, в каком захочет). После этого фокусник угадывает номера карточек, спрятанных у зрителя. Как фокуснику и ассистенту договориться, чтобы фокус всегда удавался?

Прислать комментарий     Решение

Задача 116064

Тема:   [ Кооперативные алгоритмы ]
Сложность: 4-
Классы: 6,7,8

Дракон запер в пещере шестерых гномов и сказал: "У меня есть семь колпаков семи цветов радуги. Завтра утром я завяжу вам глаза и надену на каждого по колпаку, а один колпак спрячу. Затем сниму повязки, и вы сможете увидеть колпаки на головах у других, но общаться я вам уже не позволю. После этого каждый втайне от других скажет мне цвет спрятанного колпака. Если угадают хотя бы трое, всех отпущу. Если меньше – съем на обед". Как гномам заранее договориться действовать, чтобы спастись?

Прислать комментарий     Решение

Задача 64585

Темы:   [ Кооперативные алгоритмы ]
[ Примеры и контрпримеры. Конструкции ]
[ Разбиения на пары и группы; биекции ]
[ Правило произведения ]
Сложность: 4
Классы: 8,9,10,11

Автор: Грибок С.

Фокуснику завязывают глаза, а зритель выкладывает в ряд N одинаковых монет, сам выбирая, какие – орлом вверх, а какие – решкой. Ассистент фокусника просит зрителя написать на листе бумаги любое целое число от 1 до N и показать его всем присутствующим. Увидев число, ассистент указывает зрителю на одну из монет ряда и просит перевернуть её. Затем фокуснику развязывают глаза, он смотрит на ряд монет и безошибочно определяет написанное зрителем число.
  a) Докажите, что если у фокусника с ассистентом есть способ, позволяющий фокуснику гарантированно отгадывать число для  N = k,  то есть способ и для  N = 2k.
  б) Найдите все значения N, для которых у фокусника с ассистентом есть такой способ.

Прислать комментарий     Решение

Задача 64591

Темы:   [ Кооперативные алгоритмы ]
[ Примеры и контрпримеры. Конструкции ]
[ Разбиения на пары и группы; биекции ]
[ Правило произведения ]
Сложность: 4
Классы: 9,10,11

Автор: Грибок С.

Фокуснику завязывают глаза, а зритель выкладывает в ряд N одинаковых монет, сам выбирая, какие – орлом вверх, а какие – решкой. Ассистент фокусника просит зрителя написать на листе бумаги любое целое число от 1 до N и показать его всем присутствующим. Увидев число, ассистент указывает зрителю на одну из монет ряда и просит перевернуть её. Затем фокуснику развязывают глаза, он смотрит на ряд монет и безошибочно определяет написанное зрителем число.
  a) Докажите, что если у фокусника с ассистентом есть способы, позволяющие фокуснику гарантированно отгадывать число для  N = a  и для  N = b,  то есть способ и для  N = ab.
  б) Найдите все значения N, для которых у фокусника с ассистентом есть такой способ.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 21]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .