ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 343]      



Задача 35534

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2+
Классы: 7,8,9

Какое наибольшее число королей можно расставить на шахматной доске так, чтобы никакие два из них не били друг друга?
Прислать комментарий     Решение


Задача 35566

Темы:   [ Принцип Дирихле (прочее) ]
[ Прямые и плоскости в пространстве (прочее) ]
Сложность: 2+
Классы: 9,10

В воздушном пространстве находятся облака. Оказалось, что пространство можно разбить десятью плоскостями на части так, чтобы в каждой из частей находилось не более одного облака. Через какое наибольшее число облаков мог пролететь самолет, придерживаясь прямолинейного курса?
Прислать комментарий     Решение


Задача 60352

Темы:   [ Принцип Дирихле (прочее) ]
[ Классическая комбинаторика (прочее) ]
Сложность: 2+
Классы: 7,8,9

В мешке 70 шаров, отличающихся только цветом: 20 красных, 20 синих, 20 желтых, остальные – черные и белые. Какое наименьшее число шаров надо вынуть из мешка, не видя их, чтобы среди них было не менее 10 шаров одного цвета?

Прислать комментарий     Решение

Задача 60353

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2+
Классы: 7,8

Некоторые точки из данного конечного множества соединены отрезками. Докажите, что найдутся две точки, из которых выходит поровну отрезков.

Прислать комментарий     Решение

Задача 110920

Темы:   [ Принцип Дирихле (прочее) ]
[ Перебор случаев ]
Сложность: 2+
Классы: 6,7,8

У Пети в кармане несколько монет. Если Петя наугад вытащит из кармана 3 монеты, среди них обязательно найдётся монета "1 рубль". Если Петя наугад вытащит 4 монеты из кармана, среди них обязательно найдётся монета "2 рубля". Петя вытащил из кармана 5 монет. Назовите эти монеты.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 343]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы, Московского института открытого образования и ФЦП "Кадры" .