Страница:
<< 1 2 3 4 5
6 7 >> [Всего задач: 35]
В треугольнике ABC (AB > BC) K и M – середины сторон AB и AC, O – точка пересечения биссектрис. Пусть P – точка пересечения прямых KM и CO, а точка Q такова, что QP ⊥ KM и QM || BO. Докажите, что QO ⊥ AC.
|
|
Сложность: 4 Классы: 8,9,10
|
Решите в целых числах уравнение (x² – y²)² = 1 + 16y.
|
|
Сложность: 4 Классы: 7,8,9
|
В треугольнике ABC (AB > BC) проведены медиана BM и биссектриса BL. Прямая, проходящая через точку M параллельно AB, пересекает BL в точке D, а прямая, проходящая через L параллельно BC, пересекает BM в точке E. Докажите, что прямые ED и BL перпендикулярны.
|
|
Сложность: 4 Классы: 8,9,10
|
Докажите, что если 0 < a, b < 1, то
.
Пусть O – центр описанной окружности ω остроугольного треугольника ABC. Окружность ω1 с центром K проходит через точки A, O и C и пересекает стороны AB и BC в точках M и N. Известно, что точки L и K симметричны относительно прямой MN. Докажите, что BL ⊥ AC.
Страница:
<< 1 2 3 4 5
6 7 >> [Всего задач: 35]