Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 181]
|
|
Сложность: 3 Классы: 7,8,9
|
Сто друзей, среди которых есть Петя и Вася, живут в нескольких городах. Петя узнал расстояние от своего города до города каждого из оставшихся 99 друзей и сложил эти 99 чисел. Аналогично поступил Вася. Петя получил 1000 км. Какое наибольшее число мог получить Вася? (Города считайте точками плоскости; если двое живут в одном и том же городе, расстояние между их городами считается равным нулю.)
|
|
Сложность: 3 Классы: 7,8,9
|
Курс акций компании "Рога и копыта" каждый день в 12.00 повышается или понижается на 17% (курс не округляется).
Может ли курс акций дважды принять одно и то же значение?
|
|
Сложность: 3 Классы: 7,8,9
|
За первый год население некоторой деревни возросло на n человек, а за второй – на 300 человек. При этом за первый год население увеличилось на 300%, а за второй – на n %. Сколько жителей стало в деревне?
|
|
Сложность: 3 Классы: 8,9,10
|
Существуют ли такие три числа, что если их поставить в одном порядке в качестве коэффициентов квадратного трёхчлена, то он имеет два положительных корня, а если в другом – два отрицательных?
|
|
Сложность: 3 Классы: 8,9,10,11
|
Треугольник разрезан на несколько (не менее двух) треугольников. Один из них равнобедренный (не равносторонний), а остальные – равносторонние. Найдите углы исходного треугольника.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 181]