ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Храмцов Д.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 110080

Темы:   [ Выигрышные и проигрышные позиции ]
[ Симметричная стратегия ]
[ Геометрия на клетчатой бумаге ]
Сложность: 4-
Классы: 7,8,9

Автор: Храмцов Д.

Уголком размера n×m , где m,n2 , называется фигура, получаемая из прямоугольника размера n×m клеток удалением прямоугольника размера (n-1)×(m-1) клеток. Два игрока по очереди делают ходы, заключающиеся в закрашивании в уголке произвольного ненулевого количества клеток, образующих прямоугольник или квадрат. Пропускать ход или красить одну клетку дважды нельзя. Проигрывает тот, после чьего хода все клетки уголка окажутся окрашенными. Кто из игроков победит при правильной игре?
Прислать комментарий     Решение


Задача 116756

Темы:   [ Правильные многоугольники ]
[ Разбиения на пары и группы; биекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 9,10

Автор: Храмцов Д.

На окружности отмечены 2012 точек, делящих её на равные дуги. Из них выбрали k точек и построили выпуклый k-угольник с вершинами
в выбранных точках. При каком наибольшем k могло оказаться, что у этого многоугольника нет параллельных сторон?

Прислать комментарий     Решение

Задача 65759

Темы:   [ Геометрия на клетчатой бумаге ]
[ Замощения костями домино и плитками ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 9,10,11

Автор: Храмцов Д.

На клетчатый лист бумаги размера 100×100 положили несколько попарно неперекрывающихся картонных равнобедренных прямоугольных треугольничков с катетом 1; каждый треугольничек занимает ровно половину одной из клеток. Оказалось, что каждый единичный отрезок сетки (включая граничные) накрыт ровно одним катетом треугольничка. Найдите наибольшее возможное число клеток, не содержащих ни одного треугольничка.

Прислать комментарий     Решение

Задача 109957

Темы:   [ Инварианты ]
[ Метод координат на плоскости ]
[ Четность и нечетность ]
[ Процессы и операции ]
[ Геометрия на клетчатой бумаге ]
Сложность: 4
Классы: 8,9,10,11

Автор: Храмцов Д.

Ножки циркуля находятся в узлах бесконечного листа клетчатой бумаги, клетки которого – квадраты со стороной 1. Разрешается, не меняя раствора циркуля, поворотом его вокруг одной из ножек перемещать вторую ножку в другой узел на листе. Можно ли за несколько таких шагов поменять ножки циркуля местами?

Прислать комментарий     Решение

Задача 110050

Темы:   [ Теория алгоритмов (прочее) ]
[ Симметричная стратегия ]
Сложность: 4
Классы: 7,8,9

Автор: Храмцов Д.

Два пирата делят добычу, состоящую из двух мешков монет и алмаза, действуя по следующим правилам. Вначале первый пират забирает себе из любого мешка несколько монет и перекладывает из этого мешка в другой такое же количество монет. Затем также поступает второй пират (выбирая мешок, из которого он берет монеты, по своему усмотрению) и т.д. до тех пор, пока можно брать монеты по этим правилам. Пирату, взявшему монеты последним, достается алмаз. Кому достанется алмаз, если каждый из пиратов старается получить его? Дайте ответ в зависимости от первоначального количества монет в мешках.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .