Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Шаповалов А.В.

Александр Васильевич Шаповалов (род. 1955 г.) - автор книг "Принцип узких мест", "Турнир городов: мир математики в задачах" и других популярных книг по математике. Ответственный редактор серии "Школьные математические кружки". Ведущий преподаватель Кировской ЛМШ и Московских сборов. Член методической комиссии Турнира городов, турнира им. Савина, московского Математического праздника и других соревнований. См. сайт www.ashap.info.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 319]      



Задача 111647

Тема:   [ Задачи на движение ]
Сложность: 3+
Классы: 8,9

Несколько спортсменов стартовали одновременно с одного и того же конца прямой беговой дорожки. Их скорости различны, но постоянны. Добежав до конца дорожки, спортсмен мгновенно разворачивается и бежит обратно, затем разворачивается на другом конце, и т.д. В какой-то момент все спортсмены снова оказались в одной точке. Докажите, что такие встречи всех будут продолжаться и впредь.

Прислать комментарий     Решение

Задача 111905

Темы:   [ Задачи на проценты и отношения ]
[ Ребусы ]
[ Перебор случаев ]
Сложность: 3+
Классы: 7,8,9

На доске написано:
    В этом предложении ... процентов цифр делятся на 2, ... процентов цифр делятся на 3, а ... процентов цифр делятся и на 2 и на 3.
Вставьте вместо многоточий какие-нибудь целые числа так, чтобы написанное на доске утверждение стало верным.

Прислать комментарий     Решение

Задача 115377

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Геометрия на клетчатой бумаге ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 5,6,7

Саша разрезал шахматную доску 8× 8 по границам клеток на 30 прямоугольников так, чтобы равные прямоугольники не соприкасались даже углами (см. рис.). Попытайтесь улучшить его достижение, разрезав доску на большее число прямоугольников с соблюдением того же условия.


Прислать комментарий     Решение

Задача 116059

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7

Числа от 1 до 16 расставлены в таблице 4×4. В каждой строке, в каждом столбце и на каждой диагонали (включая диагонали из одной клетки) отметили самое большое из стоящих в ней чисел (одно число может быть отмечено несколько раз). Могли ли оказаться отмечены
  а) все числа, кроме, быть может, двух?
  б) все числа, кроме, быть может, одного?
  в) все числа?

Прислать комментарий     Решение

Задача 116065

Темы:   [ Шахматная раскраска ]
[ Боковая поверхность параллелепипеда ]
Сложность: 3+
Классы: 6,7

Деревянный брусок тремя распилами распилили на восемь меньших брусков. На рисунке у семи брусков указана их площадь поверхности.
Какова площадь поверхности невидимого бруска?




Прислать комментарий     Решение

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 319]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .