Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Шаповалов А.В.

Александр Васильевич Шаповалов (род. 1955 г.) - автор книг "Принцип узких мест", "Турнир городов: мир математики в задачах" и других популярных книг по математике. Ответственный редактор серии "Школьные математические кружки". Ведущий преподаватель Кировской ЛМШ и Московских сборов. Член методической комиссии Турнира городов, турнира им. Савина, московского Математического праздника и других соревнований. См. сайт www.ashap.info.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 319]      



Задача 66706

Темы:   [ Вспомогательная раскраска (прочее) ]
[ Гомотетия (прочее) ]
[ Теория алгоритмов (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

В таблице 10×10 записано 100 различных чисел. За ход можно выбрать любой составленный из клеток прямоугольник и переставить все числа в нём симметрично относительно его центра ("повернуть прямоугольник на 180°"). Всегда ли за 99 ходов можно добиться, чтобы числа возрастали в каждой строке слева направо и в каждом столбце – снизу вверх?

Прислать комментарий     Решение

Задача 67116

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Вспомогательные проекции ]
[ Вписанные и описанные многоугольники ]
Сложность: 4-
Классы: 8,9,10,11

На плоскости даны десять точек таких, что любые четыре лежат на контуре некоторого квадрата. Верно ли, что все десять лежат на контуре некоторого квадрата?
Прислать комментарий     Решение


Задача 98230

Темы:   [ Принцип Дирихле (прочее) ]
[ Теория графов (прочее) ]
Сложность: 4-
Классы: 7,8,9

В Простоквашинской начальной школе учится всего 20 детей. У каждых двух из них есть общий дед.
Докажите, что у одного из дедов в этой школе учится не менее 14 внуков и внучек.

Прислать комментарий     Решение

Задача 98267

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9

На координатной плоскости отмечены некоторые точки с целыми координатами. Известно, что никакие четыре из них не лежат на одной окружности. Докажите, что найдётся круг радиуса 1995, в котором не отмечено ни одной точки.

 
Прислать комментарий     Решение

Задача 98287

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Медиана, проведенная к гипотенузе ]
[ Наибольший треугольник ]
Сложность: 4-
Классы: 10,11

Прямоугольник разбит на прямоугольные треугольники, граничащие друг с другом только по целым сторонам, так, что общая сторона двух треугольников всегда служит катетом одного и гипотенузой другого. Докажите, что отношение большей стороны прямоугольника к меньшей не менее 2.

Прислать комментарий     Решение

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 319]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .