Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 319]
|
|
Сложность: 4- Классы: 8,9,10,11
|
В таблице 10×10 записано 100 различных чисел. За ход можно выбрать любой составленный из клеток прямоугольник и переставить все числа в нём симметрично относительно его центра ("повернуть прямоугольник на 180°"). Всегда ли за 99 ходов можно добиться, чтобы числа возрастали в каждой строке слева направо и в каждом столбце – снизу вверх?
|
|
Сложность: 4- Классы: 8,9,10,11
|
На плоскости даны десять точек таких, что любые четыре лежат на контуре некоторого квадрата. Верно ли, что все десять лежат на контуре некоторого квадрата?
|
|
Сложность: 4- Классы: 7,8,9
|
В Простоквашинской начальной школе учится всего 20 детей. У каждых двух из них есть общий дед.
Докажите, что у одного из дедов в этой школе учится не менее 14 внуков и внучек.
На координатной плоскости отмечены некоторые точки с целыми координатами. Известно, что никакие четыре из них не лежат на одной окружности. Докажите, что найдётся круг радиуса 1995, в котором не отмечено ни одной точки.
|
|
Сложность: 4- Классы: 10,11
|
Прямоугольник разбит на прямоугольные треугольники, граничащие друг с другом
только по целым сторонам, так, что общая сторона двух треугольников всегда
служит катетом одного и гипотенузой другого. Докажите, что отношение большей стороны прямоугольника к меньшей не менее 2.
Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 319]