Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 316]
|
|
Сложность: 4- Классы: 8,9,10,11
|
а) Даны 32 одинаковые по виду монеты. Известно, что среди них есть ровно две фальшивые, которые отличаются от остальных по весу (настоящие монеты равны по весу, и фальшивые монеты также равны по весу). Как разделить все монеты на две равные по весу кучки, сделав не более четырёх взвешиваний на чашечных весах без гирь?
б) Та же задача для 22 монет.
На плоскости отмечены несколько (больше трёх) точек. Известно, что если выкинуть любую точку, то оставшиеся будут симметричны относительно какой-нибудь прямой. Верно ли, что все множество точек тоже симметрично относительно какой-нибудь прямой?
Саша выставляет на пустую шахматную доску ладьи: первую – куда захочет, а каждую следующую ставит так, чтобы она побила нечётное число ранее выставленных ладей. Какое наибольшее число ладей он сможет так выставить?
|
|
Сложность: 4- Классы: 9,10,11
|
Существуют ли такие натуральные числа a1
< a2 < a3 < ... < a100, что НОК(a1, a2) > НОК(a2, a3) > ... > НОК(a99, a100)?
|
|
Сложность: 4- Классы: 9,10,11
|
Клетки шахматной доски занумерованы числами от 1 до 64 так, что соседние номера стоят в соседних (по стороне) клетках.
Какова наименьшая возможная сумма номеров на диагонали?
Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 316]