ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Туркевич Э.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 3]      



Задача 97773

Тема:   [ Десятичная система счисления ]
Сложность: 3
Классы: 8,9,10

Доказать, что любое действительное положительное число можно представить в виде суммы девяти чисел, десятичная запись (каждого из) которых состоит из цифр 0 и 7.

Прислать комментарий     Решение

Задача 55245

Темы:   [ Против большей стороны лежит больший угол ]
[ Правильный (равносторонний) треугольник ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 4+
Классы: 8,9

Внутри остроугольного треугольника ABC выбрана точка M, являющаяся:

а) точкой пересечения медиан;

б) точкой пересечения биссектрис;

в) точкой пересечения высот.

Докажите, что если радиусы окружностей, вписанных в треугольники AMB, BMC, AMC равны, то треугольник ABC — правильный.

Прислать комментарий     Решение


Задача 73782

Темы:   [ Замощения костями домино и плитками ]
[ Инварианты ]
[ Деление с остатком ]
[ Делимость чисел. Общие свойства ]
Сложность: 5+
Классы: 8,9,10

Квадрат 6×6 нужно заполнить 12 плитками, из которых k имеют форму уголка, а остальные  12 – k  – прямоугольника. При каких k это возможно?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .