ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Имеется m точек, некоторые из которых соединены отрезками так, что каждая соединена с l точками. Какие значения может принимать l? Произведение пяти различных целых чисел равно 2022. Чему может равняться их сумма? Если ответов несколько — укажите их все. Мальвина попросила Буратино выписать все девятизначные числа, составленные из различных цифр. Буратино забыл, как пишется цифра 7, поэтому записал только те девятизначные числа, в которых этой цифры нет. Затем Мальвина предложила ему вычеркнуть из каждого числа по шесть цифр так, чтобы оставшееся трёхзначное число было простым. Буратино тут же заявил, что это возможно не для всех записанных чисел. Прав ли он? Точка касания вневписанной окружности со стороной треугольника и основание высоты, проведённой к этой стороне, симметричны относительно основания биссектрисы, проведённой к этой же стороне. Докажите, что эта сторона составляет треть периметра треугольника. Найдутся ли такие функции p(x) и q(x), что p(x) – чётная функция, а p(q(x)) – нечётная функция (отличная от тождественно нулевой)? Существует ли выпуклый многогранник, у которого рёбер столько же, сколько диагоналей? (Диагональю многогранника называется отрезок, соединяющий две вершины, не лежащие в одной грани.) |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 49]
Найдутся ли такие функции p(x) и q(x), что p(x) – чётная функция, а p(q(x)) – нечётная функция (отличная от тождественно нулевой)?
Существует ли выпуклый многогранник, у которого рёбер столько же, сколько диагоналей? (Диагональю многогранника называется отрезок, соединяющий две вершины, не лежащие в одной грани.)
Дискриминанты трёх приведённых квадратных трёхчленов равны 1, 4 и 9.
У квадратного уравнения x² + px + q = 0 коэффициенты p и q увеличили на единицу. Эту операцию повторили четыре раза. Приведите пример такого исходного уравнения, что у каждого из пяти полученных уравнений корни были бы целыми числами.
Существует ли тетраэдр, все грани которого — равные прямоугольные треугольники?
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 49]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке