Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 49]
|
|
Сложность: 3 Классы: 6,7,8,9
|
Произведение пяти различных целых чисел равно 2022. Чему может
равняться их сумма? Если ответов несколько — укажите их все.
На гипотенузе AB прямоугольного треугольника ABC во внешнюю сторону построен квадрат ABDE. Известно, что AC = 1, BC = 3.
В каком отношении делит сторону DE биссектриса угла C?
|
|
Сложность: 3 Классы: 8,9,10,11
|
На параболе y = x² выбраны четыре точки A, B, C, D так, что прямые AB и CD пересекаются на оси ординат.
Найдите абсциссу точки D, если абсциссы точек A, B и C равны a, b и c соответственно.
|
|
Сложность: 3 Классы: 6,7,8
|
На складе лежало несколько целых головок сыра. Ночью пришли крысы и съели 10 головок, причём все ели поровну. У нескольких крыс от обжорства заболели животы. Остальные семь крыс следующей ночью доели оставшийся сыр, но каждая крыса смогла съесть вдвое меньше сыра, чем накануне. Сколько сыра было на складе первоначально?
|
|
Сложность: 3 Классы: 8,9,10
|
После урока на доске остался график функции y = k/x и пять прямых, параллельных прямой y = kx (k ≠ 0).
Найдите произведение абсцисс всех десяти точек пересечения.
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 49]