Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 49]
|
|
Сложность: 3- Классы: 5,6,7
|
Из каждого клетчатого квадрата со стороной 3 клетки вырезается фигура из пяти клеток с таким же периметром, как у квадрата, но площадью 5 клеток. Саша утверждает, что сможет вырезать семь таких различных фигур (никакие две из них не совместятся при наложении, даже если фигуры переворачивать). Не ошибается ли он?
|
|
Сложность: 3 Классы: 10,11
|
Существует ли выпуклый многогранник, у которого есть диагонали и каждая диагональ меньше любого ребра?
|
|
Сложность: 3 Классы: 8,9,10
|
В шестиугольнике равны углы, три главные диагонали равны между собой и шесть остальных диагоналей также равны между собой.
Верно ли, что у него равны стороны?
Саша и Ваня родились 19 марта. Каждый из них отмечает свой день рождения тортом со свечками по количеству исполнившихся ему лет. В тот год, когда они познакомились, у Саши на торте было столько же свечек, сколько у Вани сегодня. Известно, что суммарное количество свечек на четырёх тортах Вани и Саши (тогда и сегодня) равно 216. Сколько лет исполнилось Ване сегодня?
|
|
Сложность: 3 Классы: 8,9,10,11
|
Дана равнобокая трапеция, сумма боковых сторон которой равна большему основанию. Докажите, что острый угол между диагоналями не больше чем $60^\circ$.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 49]