|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Дан массив. Требуется удалить из него элемент, стоящий на месте номер B,
сдвинув все последующие элементы влево.
Входные данные
Во входном файле записано сначала число N - количество элементов массива
(2<=N<=100), затем N чисел из диапазона Integer - элементы массива,
а затем число B (1<=B<=N).
Выходные данные
В выходной файл выведите N-1 число - элементы массива с удаленным B-м элементом.
Примечание
Вы должны удалить элемент непосредственно из массива, а не сделать
вид при выводе данных, что у вас такого элемента нет. Также вы не
должны для этого заводить в программе дополнительный массив.
То есть ввод данных осуществляется следующим фрагментом:
read(fi,n);
for i:=1 to n do read(fi,a[i]);
read(fi,b);
А вывод - следующим:
for i:=1 to n-1 do write(fo,a[i],' ');
Необходимые фрагменты вы можете найти в файле P128.PAS
Пример входного файла
5
1 3 5 6 7
2
Пример выходного файла
1 5 6 7
Текст программы P128.PAS
const nmax=100;
var a:array[1..nmax] of integer;
n:integer;
i:integer;
b:integer;
fi,fo:text;
begin
assign(fi,'input.txt');
reset(fi);
assign(fo,'output.txt');
rewrite(fo);
read(fi,n);
for i:=1 to n do read(fi,a[i]);
read(fi,b);
{Вы должны писать здесь}
for i:=1 to n-1 do write(fo,a[i],' ');
close(fi);
close(fo);
end.
|
Страница: << 1 2 3 4 5 6 >> [Всего задач: 28]
Имеется 68 монет, причём известно, что любые две монеты различаются по весу.
Имеется два трёхлитровых сосуда. В одном 1 л воды, в другом – 1 л двухпроцентного раствора поваренной соли. Разрешается переливать любую часть жидкости из одного сосуда в другой, после чего перемешивать. Можно ли за несколько таких переливаний получить полуторапроцентный раствор в том сосуде, в котором вначале была вода?
Среди десятизначных чисел каких больше: тех, которые можно представить как произведение двух пятизначных чисел, или тех, которые нельзя так представить?
Дано 27 кубиков одинакового размера: 9 красных, 9 синих и 9 белых. Можно ли сложить из них куб таким образом, чтобы каждый столбик из трёх кубиков содержал кубики ровно двух цветов? (Рассматриваются столбики, параллельные всем ребрам куба, всего 27 столбиков.)
Найдите 10 различных натуральных чисел, обладающих тем свойством, что их сумма делится на каждое из них.
Страница: << 1 2 3 4 5 6 >> [Всего задач: 28] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|