Страница: << 1 2 3 4 5 6 >> [Всего задач: 28]
|
|
Сложность: 3+ Классы: 7,8,9
|
Из листа клетчатой бумаги размером 29×29 клеточек вырезали 99 квадратиков
2×2 (режут по линиям).
Доказать, что из оставшейся части листа можно вырезать ещё хотя бы один такой же квадратик.
|
|
Сложность: 3+ Классы: 7,8,9,10
|
Можно ли провести в каждом квадратике на поверхности кубика Рубика диагональ так, чтобы получился несамопересекающийся путь?
|
|
Сложность: 3+ Классы: 8,9,10
|
Даны 1000 линейных функций: fk(x) = pkx + qk (k = 1, 2, ..., 1000). Нужно найти значение их композиции f(x) = f1(f2(f3(...f1000(x)...))) в точке x0. Докажите, что это можно сделать не более чем за 30 стадий, если на каждой стадии можно параллельно выполнять любое число арифметических операций над парами чисел, полученных на предыдущих стадиях, а на первой стадии используются числа p1, p2, ..., p1000, q1, q2, ..., q1000, x0.
|
|
Сложность: 3+ Классы: 7,8,9
|
Лестница имеет 100 ступенек. Коля хочет спуститься по лестнице, при этом он
двигается начиная сверху прыжками вниз и вверх по очереди. Прыжки бывают трёх
типов – на шесть ступенек (через пять на шестую), на семь и на восемь. Два раза на одну ступеньку Коля не становится. Сможет ли он спуститься?
|
|
Сложность: 3+ Классы: 6,7,8
|
Доска 100×100 разбита на 10000 единичных квадратиков. Один из них
вырезали, так что образовалась дырка. Можно ли оставшуюся часть доски
покрыть равнобедренными прямоугольными треугольниками с гипотенузой длины 2 так,
чтобы их гипотенузы шли по сторонам квадратиков, а катеты – по диагоналям и
чтобы треугольники не налегали друг на друга и не свисали с доски?
Страница: << 1 2 3 4 5 6 >> [Всего задач: 28]