Страница: << 1 2 3 4 5 6 >> [Всего задач: 28]
|
|
Сложность: 3+ Классы: 7,8,9,10
|
В нашем распоряжении имеются "кирпичи", имеющие форму, которая получается
следующим образом: приклеиваем к одному единичному кубу по трём его граням,
имеющим общую вершину, ещё три единичных куба, так что склеиваемые грани
полностью совпадают. Можно ли сложить прямоугольный параллелепипед 11×12×13 из таких "кирпичей"?
|
|
Сложность: 4- Классы: 7,8,9,10
|
Квадратная комната разгорожена перегородками на несколько меньших квадратных комнат. Длина стороны каждой комнаты – целое число.
Докажите, что сумма длин всех перегородок делится на 4.
|
|
Сложность: 4- Классы: 8,9,10
|
В кооперативе из 11 человек имеется партячейка. На каждом собрании ячейки
происходит либо приём одного члена в партию, либо исключение из партии одного
человека. В партячейке не может быть меньше трёх человек. Возвращаться к
какому-либо из прежних составов партячейки запрещено уставом. Может ли к
какому-то моменту оказаться, что все варианты состава ячейки реализованы?
|
|
Сложность: 4- Классы: 8,9,10
|
На стене висят двое правильно идущих совершенно одинаковых часов. Одни показывают московское время, другие – местное. Минимальное расстояние между концами их часовых стрелок равно m, а максимальное – M. Найдите расстояние между центрами этих часов.
В королевстве восемь городов. Король хочет построить такую систему дорог, чтобы
из каждого города можно было попасть в любой другой, минуя не более одного
промежуточного города, и чтобы из каждого города выходило не более k дорог.
При каких k это возможно?
Страница: << 1 2 3 4 5 6 >> [Всего задач: 28]