ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 1 2 [Всего задач: 10]
Сумма n положительных чисел x1, x2, x3, ..., xn равна 1.
а) Из любых двухсот целых чисел можно выбрать сто чисел, сумма которых делится на 100. Докажите это.
В каждую клетку бесконечного листа клетчатой бумаги вписано некоторое число так, что сумма чисел в любом квадрате, стороны которого идут по линиям сетки, по модулю не превосходит единицы.
На n карточках, выложенных по окружности, записаны числа, каждое из которых
Двое играют в следующую игру. Один называет цифру, а другой вставляет её по своему усмотрению вместо одной из звёздочек в следующей разности: **** – ****. Затем первый называет ещё одну цифру, второй ставит её, первый опять называет цифру, и так играют до тех пор, когда все звёздочки будут заменены цифрами. Первый стремится к тому, чтобы разность получилась как можно больше, а а) второй может расставлять цифры так, чтобы полученная разность стала не больше 4000, независимо от того, какие цифры называл первый; б) первый может называть цифры так, чтобы разность стала не меньше 4000, независимо от того, куда расставляет цифры второй.
Страница: << 1 2 [Всего задач: 10]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке