Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Хачатурян А.В.

Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Расстояния от центра описанной окружности остроугольного треугольника до его сторон равны da, db и dc. Докажите, что  da + db + dc = R + r.

Вниз   Решение


Составьте уравнение плоскости, проходящей через середину отрезка с концами в точках P(-1;2;5) и Q(3;-4;1) перпендикулярно прямой, проходящей через точки A(0;-2;-1) и B(3;2;-1) .

ВверхВниз   Решение


Точки M и N таковы, что  AM : BM : CM = AN : BN : CN. Докажите, что прямая MN проходит через центр O описанной окружности треугольника ABC.

ВверхВниз   Решение


Окружность с центром I касается сторон AB, BC, CA треугольника ABC в точках C1, A1, B1. Прямые AI, CI, B1I пересекают A1C1 в точках X, Y, Z соответственно. Докажите, что  ∠YB1Z = ∠XB1Z.

ВверхВниз   Решение


Найдите острый угол между плоскостями 2x - y - 3z + 5 = 0 и x + y - 2 = 0 .

ВверхВниз   Решение


Робот придумал шифр для записи слов: заменил некоторые буквы алфавита однозначными или двузначными числами, используя только цифры 1, 2 и 3 (разные буквы он заменял разными числами). Сначала он записал шифром сам себя:  РОБОТ = 3112131233.  Зашифровав слова КРОКОДИЛ и БЕГЕМОТ, он с удивлением заметил, что числа вышли совершенно одинаковыми! Потом Робот записал слово МАТЕМАТИКА. Напишите число, которое у него получилось.

ВверхВниз   Решение


Замените в слове МАТЕМАТИКА буквы цифрами и знаками сложения и вычитания так, чтобы получилось числовое выражение, равное 2014.
(Одинаковыми буквами обозначены одинаковые цифры или знаки, разными – разные. Достаточно привести пример.)

ВверхВниз   Решение


На клетчатой бумаге был нарисован лабиринт: квадрат 5×5 (внешняя стена) с выходом шириной в одну клетку, а также внутренние стенки, идущие по линиям сетки. На рисунке мы скрыли от вас все внутренние стенки. Начертите, как они могли располагаться, зная, что числа, стоящие в клетках, показывают наименьшее количество шагов, за которое можно было покинуть лабиринт, стартовав из этой клетки (шаг делается в соседнюю по стороне клетку, если они не разделены стенкой). Достаточно одного примера, пояснения не нужны.

Вверх   Решение

Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 37]      



Задача 117002

Темы:   [ Осевая и скользящая симметрии (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 5,6,7

Из квадратного листа бумаги сложили треугольник (см. рисунки). Найдите отмеченный угол.

Прислать комментарий     Решение

Задача 66520

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 5,6,7

На клетчатой бумаге был нарисован лабиринт: квадрат 5×5 (внешняя стена) с выходом шириной в одну клетку, а также внутренние стенки, идущие по линиям сетки. На рисунке мы скрыли от вас все внутренние стенки. Начертите, как они могли располагаться, зная, что числа, стоящие в клетках, показывают наименьшее количество шагов, за которое можно было покинуть лабиринт, стартовав из этой клетки (шаг делается в соседнюю по стороне клетку, если они не разделены стенкой). Достаточно одного примера, пояснения не нужны.

Прислать комментарий     Решение


Задача 64377

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3+
Классы: 6,7

Квадрат разрезали на двенадцать прямоугольных треугольников.
Могут ли десять из них оказаться равными друг другу, а два оставшихся – отличаться и от них, и друг от друга?

Прислать комментарий     Решение

Задача 64573

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 6,7,8

Мама испекла пирожки – три с рисом, три с капустой и один с вишней – и выложила их на блюдо по кругу (см. рис.). Потом поставила блюдо в микроволновку подогреть. На вид все пирожки одинаковые. Маша знает, как они лежали, но не знает, как повернулось блюдо. Она хочет съесть пирожок с вишней, а остальные считает невкусными. Как Маше наверняка добиться этого, надкусив как можно меньше невкусных пирожков?

Прислать комментарий     Решение

Задача 64576

Тема:   [ Ребусы ]
Сложность: 3+
Классы: 6,7,8

Замените в слове МАТЕМАТИКА буквы цифрами и знаками сложения и вычитания так, чтобы получилось числовое выражение, равное 2014.
(Одинаковыми буквами обозначены одинаковые цифры или знаки, разными – разные. Достаточно привести пример.)

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 37]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .