Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 37]
|
|
Сложность: 3+ Классы: 7,8,9
|
На прозрачном листе бумаги отмечены три точки.
Докажите, что лист можно согнуть по некоторой прямой так, чтобы эти точки оказались в вершинах равностороннего треугольника.
|
|
Сложность: 3+ Классы: 7,8,9
|
Дано натуральное число $N$. Для того чтобы найти целое число, ближайшее
к $\sqrt{N}$, воспользуемся следующим способом: найдём среди квадратов натуральных чисел число $a^2$, ближайшее к числу $N$; тогда $a$ и будет искомым числом. Обязательно ли этот способ даст правильный ответ?
|
|
Сложность: 3+ Классы: 9,10
|
На основании AD и боковой стороне AB равнобедренной трапеции
ABCD взяты точки E, F соответственно так, что CDEF –
также равнобедренная трапеция. Докажите, что AE·ED = AF·FB.
|
|
Сложность: 3+ Классы: 7,8,9
|
Пётр родился в XIX веке, а его брат Павел – в XX веке. Однажды братья встретились на праздновании своего общего дня рождения. Пётр сказал: "Мой возраст равен сумме цифр года моего рождения". – "Мой тоже", – ответил Павел. На сколько лет Павел младше Петра?
|
|
Сложность: 3+ Классы: 5,6,7
|
13 детей сели за круглый стол и договорились, что мальчики будут врать девочкам, а друг другу говорить правду, а девочки, наоборот, будут врать мальчикам, а друг другу говорить правду. Один из детей сказал своему правому соседу: "Большинство из нас мальчики". Тот сказал своему правому соседу: "Большинство из нас девочки", а он своему соседу справа: "Большинство из нас мальчики", а тот своему: "Большинство из нас девочки" и так далее, пока последний ребёнок не сказал первому: "Большинство из нас мальчики". Сколько мальчиков было за столом?
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 37]