Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 57]
|
|
|
Сложность: 3+ Классы: 8,9,10
|
На Поле Чудес выросло 11 золотых монет, но стало известно, что ровно четыре из них фальшивые. Все настоящие монеты весят одинаково, все фальшивые тоже, но они легче настоящих. Лиса Алиса и Буратино собрали монеты и стали их делить. Алиса собирается отдать Буратино четыре монеты, но он хочет сначала проверить, все ли они настоящие. Сможет ли он сделать это за два взвешивания на чашечных весах без гирь?
|
|
|
Сложность: 3+ Классы: 7,8,9
|
На шахматной доске 100×100 расставлено 100 не бьющих друг друга ферзей.
Докажите, что в каждом угловом квадрате 50×50 находится хотя бы один
ферзь.
|
|
|
Сложность: 3+ Классы: 8,9,10
|
На сторонах AB и AC треугольника ABC нашлись такие точки M и N, отличные от вершин, что MC = AC и NB = AB. Точка P симметрична точке A относительно прямой BC. Докажите, что PA является биссектрисой угла MPN.
|
|
|
Сложность: 3+ Классы: 7,8,9,10
|
Путешественник прибыл на остров, где живут 50 аборигенов, каждый из которых либо рыцарь, либо лжец. Все аборигены встали в круг, и каждый назвал сначала возраст своего соседа слева, а потом возраст соседа справа. Известно, что каждый рыцарь назвал оба числа верно, а каждый лжец какой-то из возрастов (по своему выбору) увеличил на 1, а другой – уменьшил на 1. Всегда ли путешественник по высказываниям аборигенов сможет определить, кто из них рыцарь, а кто лжец?
|
|
|
Сложность: 3+ Классы: 7,8,9,10,11
|
Натуральное число $M$ представили в виде произведения простых сомножителей. Затем каждый из них увеличили на 1, и произведение стало равно $N$. Оказалось, что $N$ делится на $M$. Докажите, что если теперь разложить $N$ на простые множители и каждый из них увеличить на 1, то полученное произведение будет делиться на $N$.
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 57]